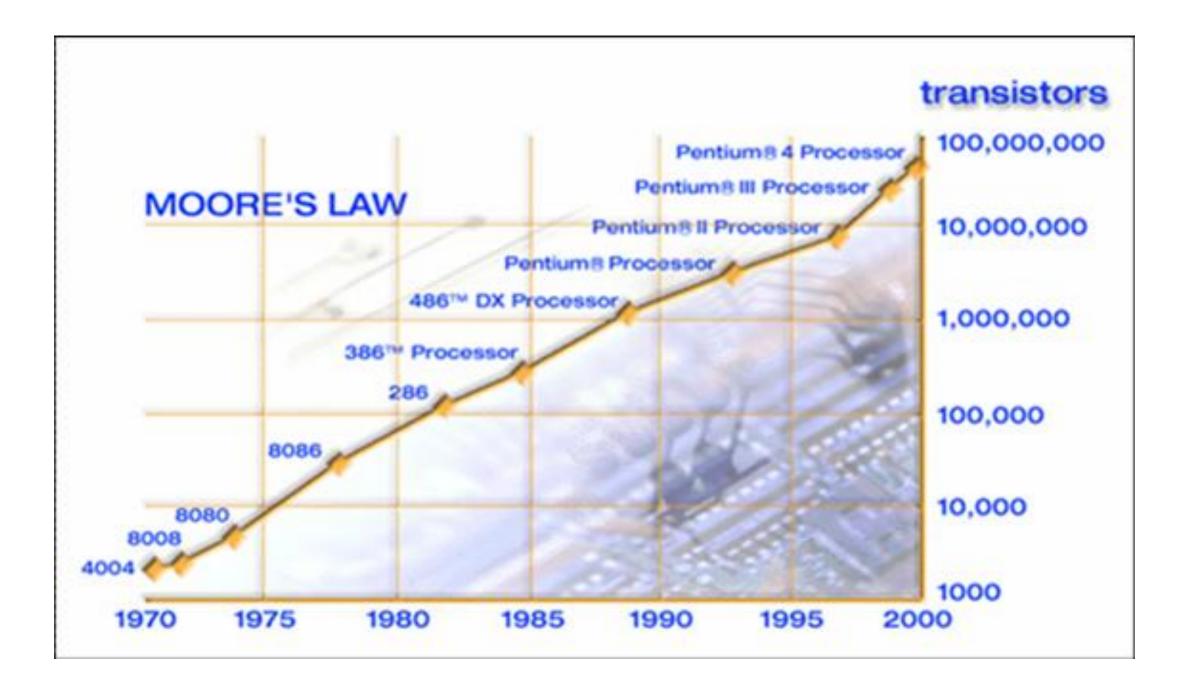
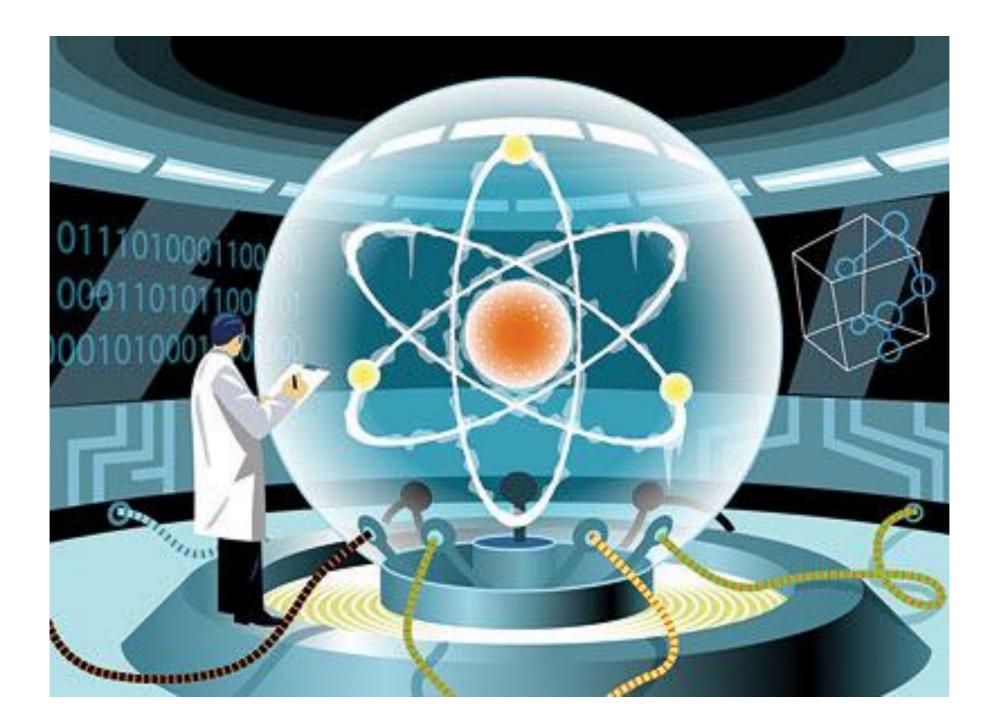
Simulation of a Quantum Computer

Roshenac Mitchell, Max Nolte, Martin Rüfenacht, Mark Stringer, Justs Zariņš

Classical



Quantum



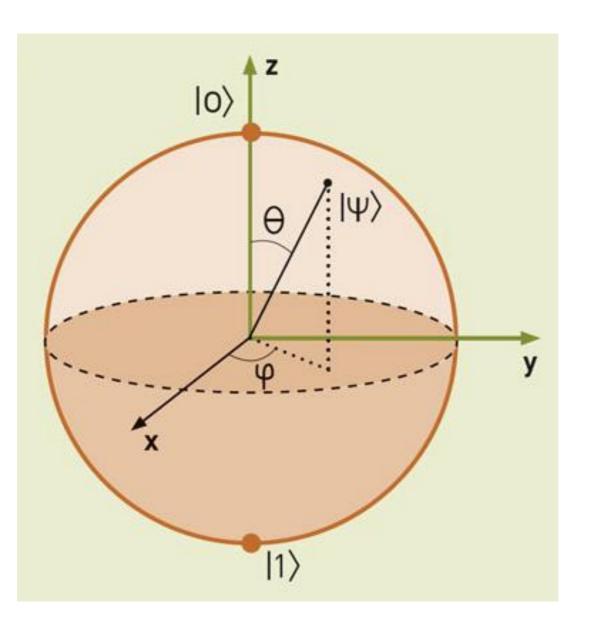
Quantum

Next

- Theory
- Design and Implementation
- Deutsch-Jozsa's algorithm
- Grover's algorithm
- Shor's algorithm

Theory

Qubits

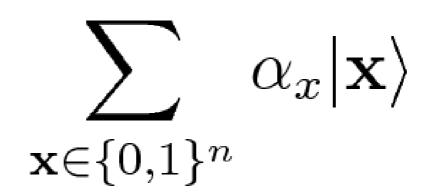


 $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$

Quantum register

$|\psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$

Quantum register



Gates

- Unitary operations
- Reversible
- Multiple gates form network

Hadmard gate

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix}$$

 $|x\rangle - H - (-1)^{x} |x\rangle + |1-x\rangle$

Phase shift gate

$$\phi = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}$$

$|0\rangle$ left unchanged

$$|1\rangle$$
 changed to $e^{i\phi}|1\rangle$

Controlled NOT

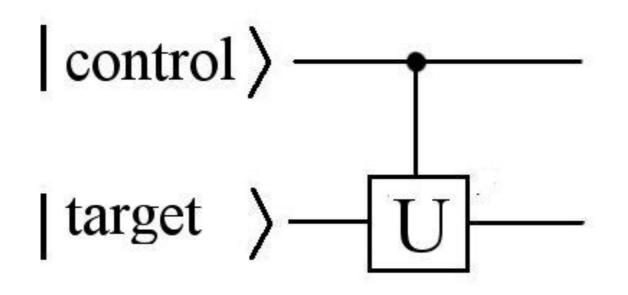
$$C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Control Before	Target Before	Control After	Target After
0	0	0	0
0	1	0	1
1	0	1	1
1	1	1	0

Controlled V

$$V = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & i \end{pmatrix}$$

Controlled U



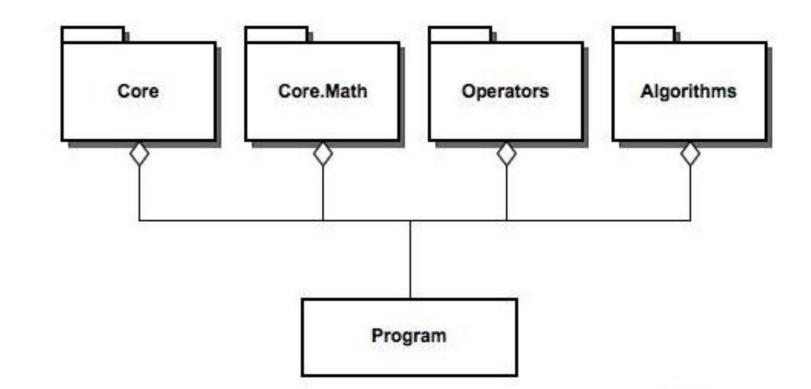
Swap

$$S = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Design

Design

- Library
 Centric
- Packages



Core Package

- Data structure
- Interfaces
- Functional

QRegister	
 bits : int amplitudes : ComplexVector 	
+ measure() : int	

Operator			
+ apply(QRe	gister): QRegiste ator): Operator	ər	

Algorithm	
+ run() : AlgorithmOutput	

AlgorithmOutput			
+ toString() : String			

Core.Math Package

~			10.0	
	\sim	m	n	OV.
	u			ex
	_			

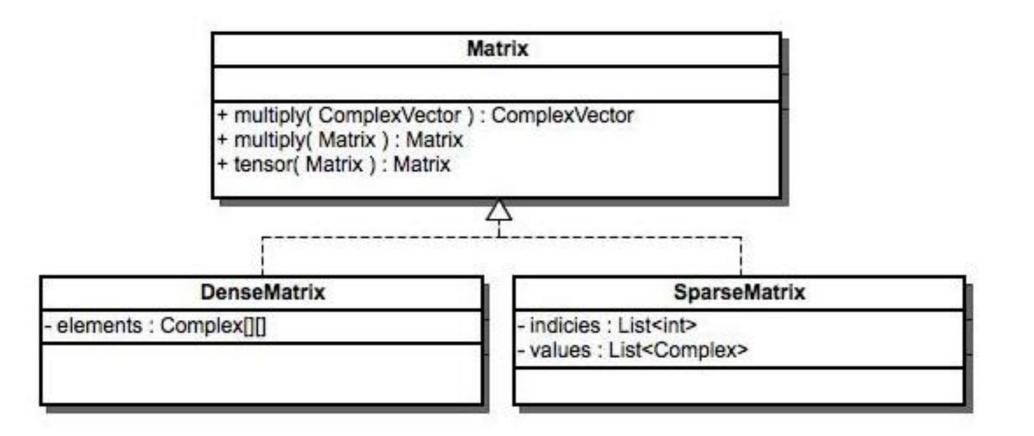
- real : float

- imaginary : float

ComplexVector

elements : Complex[]

+ normalize() : void

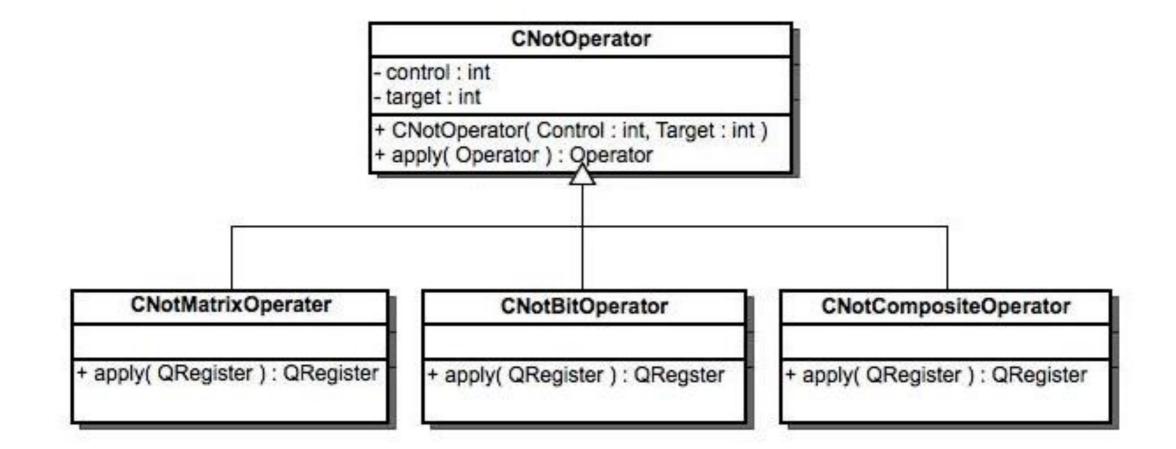


Operators Package

- Matrix
- Bit Manipulation
- Composite
- Bit assignment?

Operator	Matrix	Bit Manipulation	Composite
Hadamard	\checkmark	\checkmark	
Phase	\checkmark	\checkmark	
cV	\checkmark	\checkmark	
Swap		\checkmark	
CNot	~	\checkmark	✓
CCNot			\checkmark

CNot Analysis



CNot Analysis Matrix Multiplication

$$\left(egin{array}{ccccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{array}
ight)$$

CNot Analysis Bit Manipulation

for every base:

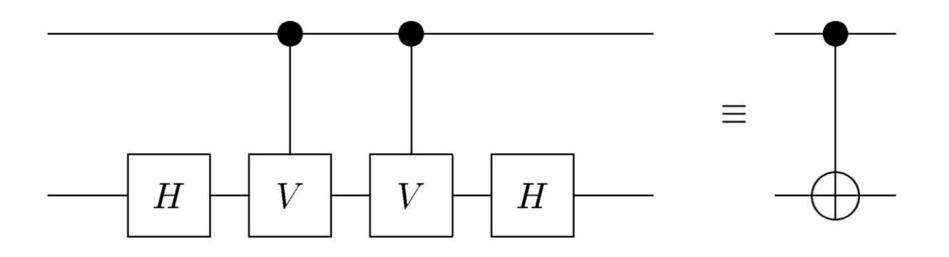
test if control base

swap target

else

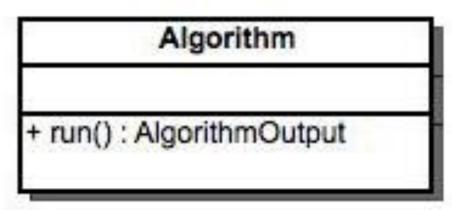
do nothing

CNot Analysis Composite Operator



Algorithms Package

- Deutsch-Jozsa
- Grover's
 Algorithm
- Shor's Algorithm



AlgorithmOutput

+ toString() : String

Deutsch-Jozsa Algorithm

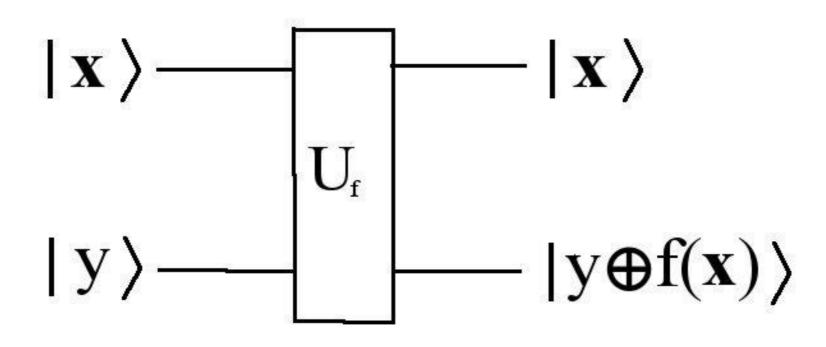
Deutsch-Jozsa Algorithm

 Determines whether function is constant or balanced

$$f: \{0, 1\}^n \to \{0, 1\}$$

Deutsch-Jozsa Algorithm

Only needs one (quantum mechanical) evaluation



Grover's algorithm

Grover's Algorithm

used for searching an unordered list for an element location

Classical computer = O(N)- searches each entry sequentially

Grover algorithm = $O(\sqrt{N})$ - searches every entry simultaneously

Fastest possible order for searching in a quantum model

Grover's Algorithm

- Initialisation
- Grover Iteration

- Measurement

Initialisation

creates a superposition of all basis states.

done by applying Hadamard operator to each qubit within the quantum register

$$|\psi\rangle = \frac{1}{\sqrt{(N)}} \sum_{i=0}^{N-1} |i\rangle$$

Grover Iteration

Iterated $\frac{\pi}{4}\sqrt{N}$ many times

Oracle - black box function represented by

$$\begin{array}{l} U_{\omega}|\omega\rangle = -|\omega\rangle \\ U_{\omega}|x\rangle = |x\rangle \quad \text{for all } x \neq \omega \end{array}$$

Diffusion Operator - inversion about the mean values of the amplitudes of each state

$$U_s = -HI_{|0\rangle}H$$

Measurement

causes quantum register to collapse

probability answer state is obtained is:

$$Prob(|x_0
angle) \geq 1 - rac{1}{N}$$

Implementation

Points of interest

- Grover Oracle
- Grover Diffusion Algorithm
- Grover Op Algortihm
- Grover Display

Oracle

Supplies information about the answer -number of qubits required -base count

semantically separates it from Grover Implementation

Diffusion Algorithm vs. Op Algorithm

Diffusion Algorithm

- analytic approach using a matrix as a Diffusion operator

Op Algorithm

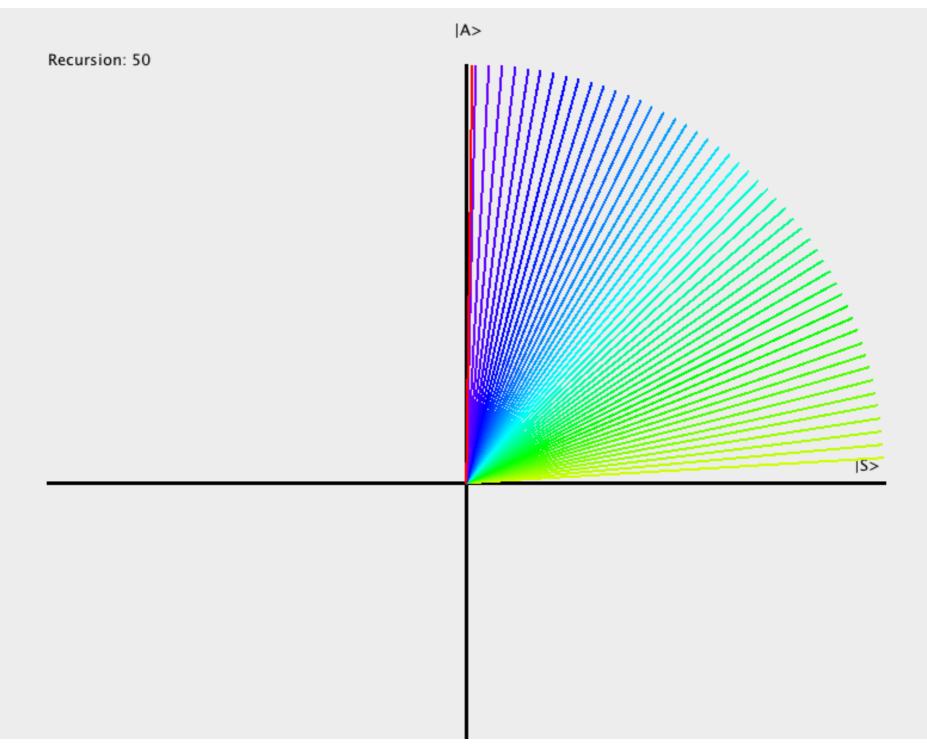
- combination of base-wise operators to act on the QRegister

Op Algorithm WINS!

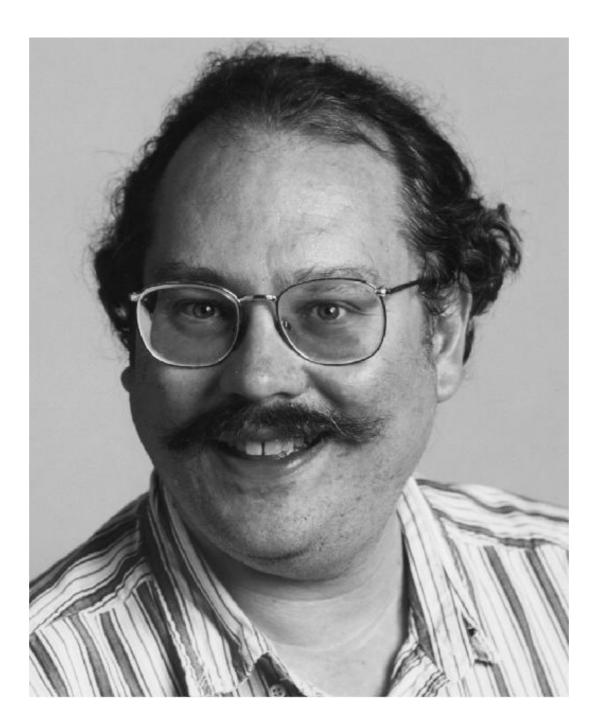
More efficient - less memory usage of the operators

More sequential - less complex to understand

Display

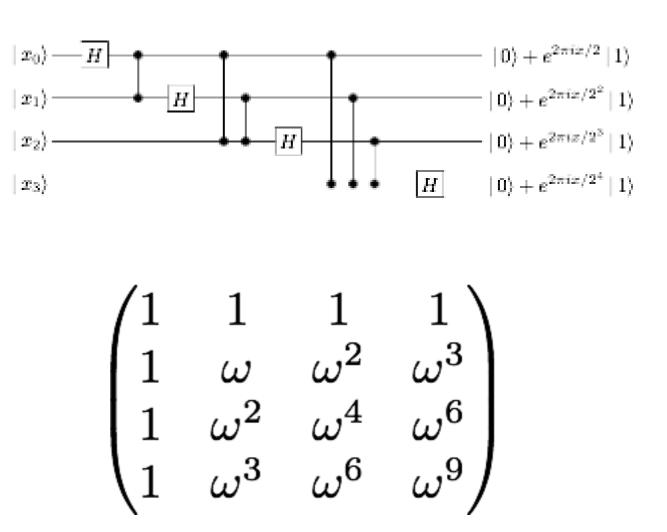


generated by Gram-Schmidt orthogonalisation of the answer base and initial zero base



- Factors a number into it's prime factors
- Much faster than classical algorithms
- Does this by estimating the period

- Uses the quantum Fourier transform twice
- First time to put quantum register in superposition of states
- Second time to obtain an approximation to period



- Need 2 quantum registers
- One to Store arguments, other to store values of function
- First in state $|0\rangle$ second in state $|1\rangle$
- System in State $|0\rangle|1\rangle$

- Apply quantum Fourier transform to first register
- Puts it in superposition of all states

- Then apply gate shown to the right on the system
- This calculates all the values for the function simultaneously, faster than doing it classically

$$|x\rangle|1
angle o |x
angle|m^x \mod N
angle$$

- Apply Quantum Fourier transform again to the first register
- The probability amplitudes for the periods add up to give high probability of correct answer upon measurement
- Other amplitudes cancel

- Now measure the quantum register.
- This can then be used to find the period (in lowest terms) of the function by using a continued fraction expansion.

- How does the period help us find the factors
- We know:

 $m^p = 1 \mod N$ $m^p - 1 = 0 \mod N$ $(m^{\frac{p}{2}} - 1)(m^{\frac{p}{2}} + 1) = 0 \mod N$

So the two components above are factors of some multiple of N

- Finding the greatest common devisor using Euclids algorithm for N and one of the components of the expression
- You obtain a factor
- The other can simply be found via division

Shor's Implementation

- Two gates used
- Quantum Fourier transform
- Unitary operator that applies the transform

$$|x\rangle|1
angle o |x
angle|m^x \mod N
angle$$

Shor's Implementation

- Quantum Fourier transform
- Implemented using a matrix representation
- Much faster to construct
- Same speed when applied to Register

Shor's Implementation

- Used bit manipulation for unitary transformation
- Faster than matrix/gates
- Conceptually easier to construct than a matrix/gates

Conclusion

Great success!

- Framework and Grover's algorithm
- Two additional algorithms
- Good teamwork

The Future?

Live Demo