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Quantum register
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Gates

* Unitary operations
* Reversible

* Multiple gates form network



Hadmard gate
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Phase shift gate
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Controlled NOT
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Controlled U
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Design
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Core Package

e Data structure

_ - bits : int
o - amplitudes : ComplexVector . .
Functional fametude o RgormO

Operator AlgorithmOutput

+ toString() : String

+ apply( QRegister ) : QReqgister
+ apply( Operator ) : Operator




Core.Math Package

Complex

ComplexVector

- real : float - elements : Complex|]

- imaginary : float

+ normalize() : void

Matrix

+ multiply( ComplexVector ) : ComplexVector
+ multiply( Matrix ) : Matrix
+ tensor( Matrix ) : Matrix

DenseMatrix

SparseMatrix

- elements : Complex(][]

- indicies : List<int>
- values : List<Complex>




Operators Package

* Matrix

* Bit Manipulation
» Composite

* Bit assignment?

Operator

Matrix

Bit Manipulation

Composite
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CNot Analysis

CNotOperator
- control : int
-target : int

+ CNotOperator( Control : int, Target : int )
+ apply( Operator ) :

CNotMatrixOperater CNotBitOperator CNotCompositeOperator

+ apply( QReqgister ) : QRegister + apply( QRegister ) : QRegster + apply( QReqister ) : QRegister




CNot Analysis
Matrix Multiplication
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CNot Analysis
Bit Manipulation

for every base:
test If control base
swap target
else

do nothing



CNot Analysis
Composite Operator




Algorithms Package

» Deutsch-Jozsa

* srover's

Algorithm

- Shor’s Algorithm
e rr——

+ toString() : String



Deutsch-Jozsa Algorithm

27



Deutsch-Jozsa Algorithm

 Determines whether function IS constant or
balanced

f:40,1}" — {0,1}



Deutsch-Jozsa Algorithm

* Only needs one (quantum mechanical)
evaluation
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Grover's algorithm
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Grover’s Algorithm

used for searching an unordered list for an element
location

Classical computer = O(N)
- searches each entry sequentially

Grover algorithm = 0 (V/N)
- searches every entry
simultaneously

Fastest possible order for searching in a guantum
model



Grover’s Algorithm

- Initialisation

- Grover lteration

- Measurement



Initialisation

creates a superposition of all basis states.

done by applying Hadamard operator to each qubit
within the quantum register

| 1 N=1 |
=T 2



Grover Iteration

lterated =N many times

Oracle - black box function represented by

w) = —|w)
\}

k3 for all © # w

Diffusion Operator - inversion about the mean values of the amplitudes
of each state
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Measurement

causes quantum register to collapse

probability answer state Is obtained Is:

1

Prob(|zg)) = 1 -




Implementation

Points of interest

- Grover Oracle
- Grover Diffusion Algorithm
- Grover Op Algortihm

- Grover Display



Oracle

Supplies information about the answer
-number of qubits required

-base count

semantically separates it from Grover
Implementation



Diffusion Algorithm vs. Op
Algorithm

Diffusion Algorithm

- analytic approach using a matrix as a Diffusion operator

Op Algorithm

- combination of base-wise operators to act on the QRegister



Op Algorithm WINS!

More efficient - less memory usage of the operators

More sequential - less complex to understand



Display
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generated by Gram-Schmidt orthogonalisation of the answer base and initial zero base



Shor’s algorithm
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Shor’s Algorithm

® Factors a number into it's prime factors
® Much faster than classical algorithms

® Does this by estimating the period



Shor’s Algorithm

® Uses the quantum
Fourier transform
twice

® First time to put
guantum register in
superposition of states

® Second time to obtain
an approximation to
period
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Shor’s Algorithm

Need 2 quantum registers

One to Store arguments, other to store
values of function

First in state |0) second in state |1)

System in State [0)[1)



Shor’s Algorithm

® Apply guantum Fourier transform to first
register

® Puts it in superposition of all states



Shor’s Algorithm

® Then apply gate
shown to the right on
the system

® This calculates allthe  |x)|1) — |z)|m” mod N)
values for the function
simultaneously, faster
than doing it
classically



Shor’s Algorithm

® Apply Quantum Fourier transform again
to the first reqgister

® The probability amplitudes for the
periods add up to give high probabillity
of correct answer upon measurement

® Other amplitudes cancel



Shor’s Algorithm

® Now measure the quantum register.

® This can then be used to find the period
(in lowest terms) of the function by
using a continued fraction expansion.



Shor’s Algorithm

® How does the period help us find the
factors

® We know:
mP =1 mod N
mP —1 =0mod N
(m2 —1)(m?2 +1) = 0mod N
® So the two components above are
factors of some multiple of N



Shor’s Algorithm

® Finding the greatest common devisor
using Euclids algorithm for N and one of

the components of the expression
® You obtain a factor

® The other can simply be found via
division



Shor's
Implementation

® Two gates used
® Quantum Fourier transform

® Unitary operator that applies the
transform

lz)|1) — |z)|m™ mod N)



Shor's
Implementation

Quantum Fourier transform

Implemented using a matrix
representation

Much faster to construct

Same speed when applied to Register



Shor's
Implementation

® Used bit manipulation for unitary
transformation

® Faster than matrix/gates

® Conceptually easier to construct than a
matrix/gates



Conclusion



Great success!

® Framework and Grover’s algorithm
® Two additional algorithms

® Good teamwork



The Future?




Live Demo



