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i

Abstract

Current teleoperation controllers, such as operator control units, are difficult to

use without operators going through extensive training. This research tests the

hypothesis that a gesture control input device would provide a more intuitive

method of controlling the HDT Adroit Underwater Manipulator. This manipulator

is currently controlled using a joystick based Hardened Operator Control Unit

(HOCU). To test this hypothesis this research uses a Leap Motion input device to

track an operator’s hand. Inverse kinematics is then used to calculate the required

joint angles which are needed to manoeuvre the manipulator’s end effector to the

required position.

The findings of this research are based on a number of timed task trials and a

questionnaire. These results suggest that the Leap Motion device is more capable,

intuitive and easier to control, compared to the HOCU. This implies that ges-

ture controllers, such as the Leap Motion device, are a plausible replacement for

a teleoperation based control input. It is further suggested that the teleoperation

control of the manipulator can advanced with the addition of virtual reality and

haptic feedback..

Keywords: manipulator, Leap Motion, teleoperation, underwater
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Chapter 1

Introduction

1.1 Background

Lichiardopol [2007] defines teleoperation as ‘doing work at a distance’. It is the

process by which an operator controls a robot remotely. The terminology used

is vague as ‘distance’ may mean operating at a considerable physical distance,

for example military robots exploring dangerous environments, or at a smaller

scale, such as microscopic surgeries. The use of teleoperation has benefited a

number of industries. These include space, military missions, mining, surgery

and underwater explorations. In particular, teleoperation has proven to be very

beneficial in many hazardous and unreachable areas, as well as areas that may be

expensive for humans to access directly.

Deep-sea explorations were one of the first uses of teleoperation (Lichiardopol

[2007]). A remotely operated vehicle (ROV) allows an operator to conduct a num-

ber of underwater tasks such as ‘surveying, inspections, oceanography and different

simple manipulation and work tasks’ (Lichiardopol [2007]). Underwater manipu-

lators, which are often attached to ROVs, are also controlled using teleoperation.

The use of teleoperation allows an operator to control the manipulator’s arm and

end effector remotely from the surface.

1



Chapter 1. Introduction 2

Currently, there are many different styles of controllers used for teleopera-

tion. For example, joysticks, teach pendants, radio remote controllers and game

controllers (Zubrycki and Granosik [2015]). Without extensive training, these de-

vices are often hard to operate well, as they often feel unnatural and unintuitive.

As a result, the operator is likely to focus more on the controller rather than on

the performance of the required task (Almeida et al. [2014]).

One solution that may lead to a more intuitive controller is the use of computer

vision and gesture-controlled devices. Research into gesture control began in 1980

(Bhuiyan and Picking [2009]) and since then the technology and research have

advanced dramatically. With the development of game controllers, such as the

Wii and the Kinect, many people are now starting to have direct experience of

these technologies. This research suggests that by providing the operator with a

more intuitive control method, such as gesture control, operating the manipulator

will become easier. As a result, it is likely that the operator will feel more confident

using the technology, allowing them to focus more on the specified task.

1.2 Research Focus

Recently, there has been an increased interest in the use of hand tracking technol-

ogy and natural user interfaces to allow users to interact with their environment

(Taylor et al. [2016]). Hand tracking technology has been used predominantly in

the games industry, with the creation of devices such as the Wii and Kinect. With

recent advances in the accuracy and efficiency of these devices, it is now possible to

use this technology within the field of robotics. This research aims to demonstrate

that by using gesture-controlled technologies, the operator can become more pre-

cise with their movements when controlling a manipulator. In turn, this will allow

the operator to control the manipulator in a more natural and intuitive manner

compared to controlling it using a joystick-based controller.
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1.3 Research Aims and Objectives

The key aims of this research are:

• Explore the different gesture controlled devices that are available

• Decide on a suitable gesture control device

• Evaluate different motion tracking options.

• Develop a controller using a more intuitive gesture controlled input

• Compare the gesture controlled controller to the current joystick controller

1.4 Research Relevance

Currently available teleoperation controllers often feel unnatural and unintuitive

to use and require extensive training. Controllers that allow operators to use a

more natural interaction to control underwater manipulators will save time and

money. This is due to the reduced training required, enabling a larger number

of operators to control underwater manipulators. With advances in the research

and development of tracking software, virtual reality and haptics, robotics is now

on the verge of delivering a more intuitive means of teleoperation for underwater

manipulators. The findings of this research are expected to lead to future studies,

where the advantages of an advanced teleoperation control system with visual and

tactile feedback can be explored further.



Chapter 2

Literature Review

2.1 Introduction

The aim of this research is to find a more intuitive means of control to improve

teleoperation of an underwater manipulator. This literature review aims to acheive

the following:

• Identify different methods of control input

• Critically evaluate the best control input for teleoperation

• Explore different technologies available for the chosen control input

• Explore different motion tracking options

The findings of the literature review is organised as follow: Section 2 discusses

different control input devices; alternative methods of gesture control are detailed

in Section 3; and Section 4 describes different methods of motion tracking.

4



Chapter 2 Literature Review 5

2.2 Control Input

2.2.1 Operator Control Unit

One of the most common methods of controlling a manipulator is the operator

control unit (Zubrycki and Granosik [2015]; Bassily et al. [2014]). An operator

control unit usually consists of a joystick and a computer. The joystick is used to

control the position and velocity of the end effector, while the computer is used

to calculate the necessary joint angles of the arm using inverse kinematics. This

allows the manipulator to move the end effector to the desired location (Shim et al.

[2010]).

The HDT Adroit-M Manipulator uses a Hardened Operator Control Unit

(HOCU) (HDT Global [2016]). The joystick allows the operator to rest their

hand comfortably whenever they need to take a break. However, it also has its

disadvantages. The joystick often requires hand and arm movements that may be

awkward and unintuitive. Additionally, it takes a skilled and experienced operator

to use an operator control unit successfully (Shim et al. [2010]). However, it is

often the case that skilled operators are not available (Zubrycki and Granosik

[2015]). To address these issues, an alternative method of operation, which is

more intuitive to use and does not require extensive training, is needed. Two

possible alternative control methods are discussed below.

2.2.2 Voice Recognition

Voice recognition can act as an alternative approach to operator control units. In

the study “A FRIEND for assisting handicapped people” (Martens et al. [2001]),

speech recognition software, used by the semiautonomous robotic system ‘FRIEND’,

allows spoken instructions to be compared to a set of approved words, which in

turn carries out the required hardware movement. However, it does not give any

scope for expanding these commands, enabling them to be used in more complex
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environments. Additionally, for safety reasons, these spoken instructions are often

long and complicated. Having complex sentence commands prevents background

noise being confused as commands. However, this results in multiple sentences

needing to be spoken in turn to carry out a string of tasks.

2.2.3 Gesture Control

In the paper “Gesture-controlled operator interfaces, what have we done and

what’s next”, (Bhuiyan and Picking [2009]), the development of gesture-controlled

technology over a period of 30 years is explored. Gesture controlled inputs are

found to be particularly beneficial to operators that struggle with more conven-

tional inputs i.e. mouse and keyboard.

Gestures are a primary form of communication for humans and are often

found naturally in babies before they can speak. Bhuiyan and Picking [2009]

define gestures as “non-verbal communication made with a part of the body”.

With recent advances in technological affordability, it is now possible to control

electronic devices using these gestures as an input. Currently, there are many

different methods of gesture sensing and, as a result, nearly all parts of the body

can be sensed.

Gestures can be recognised using several different methods, such as accelerom-

eters, wearables, gloves and cameras. These various technologies are often used in

conjunction with one another which allows them to control the hardware needed

to achieve the desired task. Cameras are now being used more than sensors as

they are easier to use. This has resulted in more household products, such as

laptops and TVs, having features that allow the possibility of gesture controlled

interaction.

The majority of research that has been conducted to date within the gesture

control field has been centred around hand gestures. This has mainly been achieved

using data gloves which are connected up to a micro-controller. Additional focus

has also been spent on head gesture recognition used alongside speech. However,
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this has not been as predominant. Researchers are now moving away from the

likes of glove sensing and moving towards image processing software.

The games industry is one of the main leaders in gesture control technologies.

Consoles such as the Wii and Kinect both use gesture control. Industries such as

simulation, training and education, as well as assistive learning also use gesture

controlled technologies. It is expected that gesture control may become more

mainstream due to the decrease in cost. These new technologies are also gradually

becoming more intuitive and natural to use.

2.3 Gesture Controlled Technologies

2.3.1 Controller-based Gestures

Within gesture controlled technologies, there are a wide range of products that

operate by direct contact with the operator. These include the Wii, tracking suits

and exoskeletons as well as haptic controllers. Technologies such as the WiiMote

are embedded with multiple sensors, such as accelerometers, that allow them to

interpret the operator’s gestures (Guna et al. [2014]). Another alternative method

is the use of vision-based devices which often use markers attached to the operator’s

body. These markers allow the cameras to focus on specific areas of the operator’s

body (Du and Zhang [2014]; Kofman et al. [2005]).

By attaching the technology directly to the operator, the detection of move-

ment is more reliable than using computer vision alone. As a result, the joint

angle measurements are more precise (Breazeal and Scassellati [2002]). However,

it does have its limitations. Technologies such as exoskeletons are cumbersome

and difficult to transport (Goncalves et al. [1995]). Additionally, having markers

attached to the operator’s body may hinder and limit the operator’s movements

(Du and Zhang [2014]).
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2.3.2 Wired Gloves

Wired gloves allow the operator’s finger joint angles to be accurately measured.

This allows the operator to control the end effector gripper in an intuitive manner

and allows the gripper to mimic the operator’s hand gestures. The use of the

glove is found to be particularly effective when the gripper is of similar structure

to a human hand (Zubrycki and Granosik [2015]). As discussed in Zubrycki and

Granosik [2014], due to the glove being directly attached to the operator’s hand,

there is no effect from external environmental conditions, such as light, that may

affect the measurements.

Wired gloves are mechanical and electrical and as a result, they come with

added issues such as wearing out. They need to be regularly calibrated as the

resistance of the sensors can vary greatly. Additionally, as the operator’s hand

is in the glove, their hand can not be used to perform any other tasks (Zubrycki

and Granosik [2014]) and limits the potential for natural interaction (Taylor et al.

[2016]).

2.3.3 Single Camera

Many gesture controlled technologies are now using cameras and computer vision.

Single cameras or monocular cameras can be found on most mobile phones. As

examined in Goncalves et al. [1995], it is possible to use an estimated image,

compared to the visual image, to get a sense of depth. This allows gestures to be

recognised without the use of body markers, allowing the operator to have a wider

range of movements.

A disadvantage of this method is the fact that depth has to be relative. A

single camera is unable to gauge the depth of an isolated point. This results in a

low level of accuracy.
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2.3.4 Depth-aware Camera

The Kinect is a great example of a depth-aware camera. It contains two cameras

and a receiver: one infrared camera transmitter and receiver, which are used for

depth detection and a standard camera which can be used for visual recognition

(Du and Zhang [2014]). It can detect full body gestures (Guna et al. [2014]) and,

as stated in Afthoni et al. [2013], it can detect over 15 joints. These include the

head, neck, torso, shoulders, elbows, hands, knees, hips and feet.

The Kinect is fairly accurate when detecting the operator’s joints, with errors

around a few millimetres. It can also recognise a number of set gestures which

can be further added to by the operator (Microsoft [2016]). Due to the distance

being detected with infrared sensors, the Kinect is not affected by changes in

environment lighting (Du and Zhang [2014]). As a result, it is fairly robust to

changes in position and location (Taylor et al. [2016]). The Kinect allows the

operator to connect with the manipulator in a more natural and intuitive way.

The use of vision only sensing removes the need for markers, sensors and cables

that may hinder the operator’s movement (Du and Zhang [2014]).

As stated on the Microsoft website (Microsoft [2016]), the Kinect has a sensor

range between 0.8 - 4 meters. This large working volume decreases the chances

of the operator’s body or hands going out of range (Taylor et al. [2016]). This

distance can be decreased using the Kinect’s “near mode” which shortens the

range to 0.5 - 3 meters. Its depth accuracy has a standard deviation of around

1.5 cm (Bassily et al. [2014]). As a result of its limited depth accuracy, while the

Kinect is good at detecting the arm and body, its accuracy of finger tracking is

very limited Guna et al. [2014]; Taylor et al. [2016]).

2.3.5 Stereo Camera

Two good examples of gesture controlled devices using stereo cameras are the Leap

Motion and 3 Gears (Bassily et al. [2014]). The Leap Motion has sub-millimetre
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accuracy and can track all ten fingers at once (Bassily et al. [2014]). Both the Leap

Motion and 3 Gears are specially designed for hand gesture recognition (Zubrycki

and Granosik [2014]) and provide position, orientation and joint angles for every

visible finger and hand (Zubrycki and Granosik [2014]). These devices produce a

limited amount of data, but the hand and finger data they produce is a lot more

accurate than the data provided by other technologies, such as the Kinect (Marin

et al. [2014]).

The field of view for the Leap Motion controller is an inverted pyramid shape,

with the point at the sensor’s centre (Guna et al. [2014]). As the operator’s hand

is moved further away from the sensor, the accuracy drops (Guna et al. [2014]).

It is stated on the Leap Motion developer website (Leap Motion [2016d]) that the

sensor range is between 25-600mm (0.025 - 0.6 meters).

As with all technologies however, it has its disadvantages. Stereo cameras

often have an issue with instability and tracking each hand when the operator’s

hands are placed on top of each other. The Leap Motion is also unable to detect

angles when hands are smooth i.e. in gloves, and finger tracking is not as accu-

rate when the angles between the fingers are large. In addition, constant light

conditions are needed (Zubrycki and Granosik [2014]).

Leap Motion, however, has recently developed a new software called Orion

(Leap Motion [2016e]) which is stated to have the following improvement:

• Enhanced tracking capabilities

• Robust to complex environments

• Expanded range

• Vastly improved grab and pinch

• Faster hand recognition

The Orion software containing these improvements is currently only available for

the Windows operating system.
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2.4 Motion Tracking

2.4.1 Motion Primitives

There are a number of ways to drive a manipulator once the gestured input has

been obtained. Motion primitives involve saving a set of pre-programmed motions

(Shim et al. [2010]). The setting of these motion primitives can either be performed

by manually moving the arm and saving the joint angles or by manually inputting

the required joint angles (Martens et al. [2001]).

Some technologies such as the Leap Motion and the 3 Gears already come

with a number of preset recognised gestures (Zubrycki and Granosik [2014]). The

Leap Motion also allows the operator to set a number of custom gestures (Bassily

et al. [2014]). These can then be categorised using the cameras on these gesture

controlled devices. This can then be used to give the operator feedback on the

speed, direction, position and orientation of the gesture performed (Zubrycki and

Granosik [2015]).

Motion primitives are useful when simple commands are required. However,

when trying to achieve more complex commands or a string of flexible commands,

motion primitives can prove to be limiting (Du and Zhang [2014]). Addition-

ally, with a fixed set of allowed gestures it forces the operator to remember all

the possible gesture commands. This may prove difficult to do under stressful

circumstances.

2.4.2 End effector Tracking

Compared to motion primitives, end effector tracking allows the operator to in-

teract with the manipulator in a more intuitive manner. End effector tracking

relies on the operator’s hand being tracked in free space. Inverse kinematics is

then used in order to work out the required joint angles for the arm in order to

move the end effector to the specified location (Shim et al. [2010]; Du and Zhang
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[2014]). End effector tracking allows the operator to concentrate on the necessary

task without having to remember a set of allowed gestures (Du and Zhang [2014]).

Hand gesture tracking devices such as the Leap Motion, as well as wrist markers,

allow hand and finger data to be accurately measured, which can then be used

for end effector tracking. However, due to the fact that only the position of the

end effector is controlled, the operator has no control over the movement of the

arm joints. This lack of control of the arm may become an issue if the requested

position is outside the manipulator’s workspace (Shim et al. [2010]).

2.4.3 Motion Retargeting

One of the more complex methods of controlling a manipulator is motion retar-

geting. This form of tracking involves mimicking the skeleton of an operator i.e.

hip, shoulder, arm, fingers and getting the joint angles between them. The joint

angles can then be mapped directly onto the manipulator (Breazeal and Scassellati

[2002]; Zubrycki and Granosik [2015]). Compared to end effector tracking, motion

retargeting requires a method of obtaining all the required joint angles. The joint

angles and locations will vary from person to person due to varying height and

body sizes. As a result, additional calibration may have to be implemented (Du

and Zhang [2014]).

2.5 Conclusion

From reviewing the literature, it is clear that at present several problems are faced

when using an operator control unit. Despite this, it is suggested that gesture

control may be a possible solution to improve controller intuitiveness and ease of

use. It is evident that there are a number of different gesture controlled devices,

each with their own methods of extracting data. To have a natural input device,

the operator’s manoeuvrability should not be limited. Although thinner data

gloves are being developed which would allow for better manoeuvrability, they are
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often more expensive than camera-based devices. Data gloves are also very fragile

which results in the hardware frequently breaking.

As explained, single cameras are not very accurate and therefore would not

be a good choice as a teleoperation input. Depth-aware cameras, such as the

Kinect, and stereo cameras, such as the Leap Motion, each have their advantages

and disadvantages. One of the issues with the Kinect is its calibration procedure.

For the Kinect to find the operator’s position, the ‘psi pose’ (Fig. 2.1) must be

performed. This ‘psi pose’ position has to be held for an extended period and

has to be repeated every time the Kinect program is restarted. This can result

in the operator’s arms being fatigued quickly. Additionally, the Kinect device is

currently inadequate at detecting hand orientation and fingers, although work is

being done to improve this. While the manipulator arm would be easily controlled

using the Kinect, it would be hard to control the end effector’s fingers without the

aid of an additional device. The Leap Motion, on the other hand, has very precise

hand and finger detection. As a result, for the purposes of this research, the Leap

Motion device was chosen to control the manipulator.

Figure 2.1: Psi pose (creativec0d3rl [2016])

The control method is constrained since the Leap Motion does not detect the

operator’s whole arm. This rules out the possibility of using motion retargeting.

While motion primitives would be a suitable option, it limits the amount of control
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the operator has over the manipulator. This is due to it only being able to perform

a set of fixed movements depending on the gesture recognised. The most promising

control option is end effector tracking. The Leap Motion detects the operator’s

hand in 3-dimensional space. This allows the required end effector position to

be set. Inverse kinematics is then used to get the required joint states needed to

position the end effector in the correct location.



Chapter 3

Research Methods

3.1 Introduction

Many underwater vehicles are equipped with manipulators which allow them to

carry out tasks such as drilling or inspections (Shim et al. [2010]). One example

of an underwater manipulator is the HDT Adroit-M Undersea Manipulator. This

manipulator has an end effector that consists of two fingers and a thumb. Each

finger has one degree of freedom and the thumb has two degrees of freedom. The

HDT Adroit-M Undersea Manipulator is currently teleoperated using a Hardened

Operator Control Unit (HOCU) (HDT Global [2016]). While the HOCU controller

allows the operator to teleoperate the manipulator, it requires an experienced and

skilled operator to control it. This is due to it being unintuitive, making it hard

for the operator to know what movements need to be performed with the joystick

in order to achieve the desired task.

This paper presents an alternative method of control using gesture-recognition

technology. The premise being, that the use of a gesture controlled input device

should create a more intuitive controller and improve ease of use. The research

behind this paper was conducted to see if a Leap Motion device could be a possible

means of controlling an underwater manipulator and whether it outperforms the

currently available HOCU device. The desired outcomes are as follows:

15
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• Run a working simulation using the Leap Motion to control the motion of

the underwater manipulator using end-effector tracking

• Control the physical HDT Adroit-M Undersea Manipulator by mimicking

human hand gestures captured by the Leap Motion sensor.

• Contrast the performance of the Leap Motion controller to the HOCU con-

troller

This chapter covers the research strategies applied, the method of data collection

and analysis, as well as the potential problems and limitations.

3.2 Research Strategy

An experimental research strategy was used to test the hypothesis that ‘a gesture

control input would provide a more intuitive method of controlling the HDT Adroit

Underwater Manipulator compared to the current HOCU controller’. This strategy

was tested using timed trials as well as a questionnaire.

3.2.1 Sending and Extracting Data

Data needs to be extracted from the Leap Motion, analysed and then sent to the

manipulator to control it. The steps needed to complete this process are explained

below.

3.2.1.1 ROS

The software within the HDT Adroit Manipulator uses Robot Operating System

(ROS) drivers. ROS is an open-source operating system made specifically for

robotic software development. As the design and production of robots have in-

creased there has become a need for a common operating system. This allows

software to be standardised and allows for better collaboration between develop-

ers. The main programming languages for ROS are Python, C++ and LISP. The
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majority of the code written for this project is in C++. However, the code used to

extract the Leap Motion data is written in Python, since an existing open source

library is used. Within ROS there are a number of key libraries:

roscore: roscore is needed before starting any ROS applications. roscore allows

ROS nodes to communicate with each other. This allows messages to be passed

between classes such as in a publish-subscribe methodology as described in section

3.1.

rosbag: rosbag allows ROS to record and playback ROS topics i.e. messages.

This allows the output signals to be analysed.

rqt plot: rqt plot provides a way of graphically plotting ROS topic signals. This

allows position and orientation of topics to be analysed as well as changes in joint

state values.

RViz: RViz is a three-dimensional visualisation tool that is used to simulate

robots using ROS. It is often necessary to simulate robot actions in a simulator

before testing it on the real robot. By testing the controller first within the simu-

lator it minimises the chances of damaging the actual robot and allows for many

iterations of the program to be tested in succession.

Transform: ROS transforms allow the operator to view different coordinate

frames in the simulation relative to a specified world frame.

Marker: Feedback messages are displayed on the RViz simulation which provide

the operator with extra information. The messages are displayed as ROS text

markers. The following message are displayed to the operator:

• Place your right hand over the Leap Motion and press the ‘s’ key to start

• Position not reachable
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• Program is paused

• Program is locked, place your right hand over the sphere to unlock

3.2.1.2 Publisher and Subscriber

One of the main forms of passing data within ROS is using the publish-subscribe

model. For this project the main publish-subscribe paths are shown in Figure 3.1.

Figure 3.1: Main data workflow

The publish-subscribe model allows for easy scalability and flexibility. Data

that is published can be accessed by multiple subscribers which allows the same

data to be used for multiple purposes. For example, the joint state data is used

to update the HDT manipulator as well as updating the simulated manipulator



Chapter 3. Research Methods 19

within RViz. When data is published it is given a unique name. This unique name

is then used in order to subscribe to the required data.

When creating a subscriber a spinner must be used. When data is published

it is added to a queue. A spinner continuously checks this queue to see if any new

data has been published that needs to be passed on to the relevant subscribers.

Without a spinner any new data will be ignored. ROS has two types of spinners;

single-thread spinner and multi-thread spinner.

• Single thread spinner: This is the default spinner. Data on the queue is

processed one at a time, blocking the sending of any other data to other

subscribers in the mean time.

• Multi-threaded spinner: This allows data to be sent in parallel. The number

of parallel threads are specified when initialising this spinner.

When creating the publisher it is important to create it during the initialisation

of the class. If the publisher is created and a message is published immediately

after, the publisher will not have sufficient time to be fully initialised. This will

result in the data failing to be sent.

3.2.1.3 Extracting Leap Values

As previously discussed, ROS is an open source platform with many contributors.

This shared software removes the need to rewrite code from scratch every time.

A Python based leap motion library already exists in ROS for extracting hand

and finger information from the Leap Motion (ROS [2016d]). The leap motion

package contains two classes: sender.py and skeleton send.py. The sender.py class

publishes LeapROS messages, while the skeleton send.py publishes the relative

finger joint positions and orientations from the Leap Motion as a transform. Both

of these features are required and as a result, both of these classes were merged

to create a custom class. This allowed for one class to be run that can achieve

all the desired tasks rather than having to run two separate classes. This custom
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class detects when the operator’s right hand is over the Leap Motion and sends

out data in the form of a LeapROS message. It also publishes the Leap Motion

skeleton transforms. These LeapROS messages include:

• Single hand 3D Palm Position: This data is used to get the current

position of the operator’s hand relative to the Leap Motion.

• Single hand 3D Palm Normal Vector: not used.

• Single hand 3D Hand Direction Vector: not used.

• Single hand 3D Palm Pose (pitch, yaw, and roll): This data gives the

relative orientation of the operator’s hand.

• All Finger joints [‘thumb’, ‘index’, ‘middle’, ‘ring’, ‘pinky’] posi-

tions: This data is used to get the relative positions of the finger joints.

• Raw camera images: not used.

This Leap Motion data is then read to control both the position and orientation

of the end-effector as well as the grip of the fingers.

There were also a number of changes made to the leap interface.py class. The

roll, pitch and yaw values were converted from degrees to radians. This change was

made in order to keep all the values as standard SI units. Additionally, the method

to calculate the roll, pitch and yaw was altered. In the original leap interface.py

class, the yaw is calculated relative to the palm normal and roll relative to the

hand direction. However, from the Leap Motion website, Leap Motion [2016b], it

states that pitch and yaw should be calculated using the direction vector and the

roll should be calculated using the normal vector.

pitch = hand.direction().pitch(); (3.1)

yaw = hand.direction().yaw(); (3.2)
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roll = hand.palmNormal().roll(); (3.3)

Once the Leap Motion information is received from the LeapROS message,

the data has to be transform, scaled, filtered and the inverse kinematics has to be

calculated, before a jointState message can be published. Once the jointState val-

ues are received, the manipulator’s ROS drivers can then update the manipulator’s

position.

3.2.2 Executing the Controller

Before the operator can teleoperate the HDT manipulator, a number of programs

have to be executed.

• roscore : Allows ROS nodes to communicate with each other.

• RViz simulator: Simulates the manipulator’s actions and displays feedback

messages to the operator.

• leap interface: Sends out data in the form of a LeapROS message and pub-

lishes the Leap Motion skeleton transforms.

• keyboard: This is used for both starting and pausing the controller

• controller: Provides the conversion from Leap Motion position to the ma-

nipulator end-effector position.

3.2.3 Population

Ideally, a large random sample population would have been used. However, due

to health and safety restrictions in the Ocean Systems Lab, the target population

was chosen using convenience sampling. Although this sampling method does not

allow for generalised results, it provides an exploratory comparison between the

two controllers. While the number of members in the Ocean Systems Lab is small,
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the sample size was limited further due to a lack of volunteers. The final population

consisted of three male subjects. Further trials would need to be conducted using

a larger and varied population sample to obtain more representative results. The

following selection criteria was used:

• Participants who have never used the HOCU or Leap Motion before. No

previous experience with either controller was desired to avoid bias.

• Limited to participants within the Ocean Systems Lab due to health and

safety reasons

3.2.4 Task

The task was set up to compare not only the performance of the devices but also

the manoeuvrability, comfort and ease of use. The task was to touch two buoys in

the fastest possible time. There was a total of 3 trials on each device. Any trials

taking longer than 5 minutes 30 seconds were viewed as a failed attempt.

3.3 Data collection

This section discusses how the data was collected including the procedure, setup

and metrics.

3.3.1 Procedure

The participants were asked to complete the task three times, in succession, on

each device. To prevent candidates from unintentionally causing a biased result,

by comparing the controllers against each other, a questionnaire was asked imme-

diately after the three time trials on each device were completed. The bias was

further minimised by having different candidates start on different devices.
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3.3.2 Setup

The manipulator was placed in the tank with two buoys fixed either side of it (Fig.

3.2, Fig. 3.3).

Figure 3.2: Manipulator and buoy setup

Figure 3.3: Manipulator and buoy setup

The operator was sat at the desk and positioned so that the simulated ma-

nipulator and HDT manipulator were at the same orientation (Fig. 3.3). Ideally,

a wide lens camera would have been attached to the manipulator to allow the

operator to view the manipulator and its surroundings on the computer screen.

This, unfortunately, was not possible due to a number of complications. The only

way to mount a camera on to the manipulator is by using cable ties attached to
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the base. When the camera is loosely attached with the cable ties, the camera

fails to stay in a fixed position when the manipulator moves. When the cable ties

are fastened tightly, the only view is of the base of the manipulator. As a result,

it was found that viewing the manipulator directly was more beneficial.

3.3.3 Metrics

Several aspects were focused on when comparing the devices:

• Time taken to hit each of the buoys: This demonstrates how easy it is

to complete a specified task using each controller.

• Intuitiveness: The aim is to have a controller that operators find natural

to use.

• Ease of taking a break: It is important that the operator can pause the

system and walk away from it.

• How painful or tiring it is to operate the device: The controller should

not be painful to use.

• Precision: The controller should be precise in order to pick up specific

objects.

• Controllability: The operator should feel as though they are in control of

the controller at all times.

3.4 Data Analysis Framework

There were three participants and each had three trials on both the Leap Motion

and HOCU devices. For each trial, the following were recorded:

• Elapsed time to touch the left buoy

• Elapsed time to complete the full task
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For each of the above measurements, on each device, the average across all par-

ticipants’ trials were calculated. The average of each of the devices was then

compared. The questionnaire consisted of five questions, each with a rating be-

tween 1 (low) and 5 (high). The questionnaire was used to assimilate how the

participants felt about each device. The questionnaire values were averaged per

question across the three participants for each device. These averages were then

compared between the two devices for each question.

3.5 Limitations and Potential Problems

While the program was completed successfully, there were a number of limitations

and potential problems that had to be overcome.

3.5.1 Software Limitations

The physical HDT arm is controlled by a ‘JointState’ message. This jointState

message contains the following parameters:

• position

• velocity

• effort

In this program both the position and the velocity of the joint states are varied.

The RViz simulation allows the program to be tested in simulation before applying

it on the physical HDT manipulator. It is, however, limited when it comes to

controlling the joint states. While the simulator has no problem in updating the

position of the manipulator, it fails to update the velocity. This results in the

velocity of the manipulator within the simulator remaining constant, regardless of

the actual value set. Consequently, precautions had to be taken when testing the

control on the actual arm with varying velocities.
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3.5.2 Hardware Limitations

Communication is one of the biggest control problems for teleoperated systems

(Lichiardopol [2007]). When using the hardware, the connection was a major

issue. The drivers were often disconnected which resulted in the manipulator

being unresponsive until it was restarted. It is thought that the issue was due to

the connector having a loose pin that became disconnected when the manipulator

moved erratically. As a temporary fix, the cable was attached to the manipulator

using cable ties to keep the cable at the correct angle.

As well as the manipulator having connection issues, the end effector also

suffered hardware faults. The thumb and fingers have a total of four joints, however

only one of these joints was working. As a result, the end effector was removed

completely from the manipulator. This minimised the type of tasks that could be

completed as there was no way of gripping objects. Unfortunately, due to this,

the control of the end-effector fingers was only tested in the simulation.

Finally, the camera proved to be a limitation. The camera that was available

was only able to stream to an external monitor rather than the laptop. The camera

had to be mounted on with cable ties and the only suitable location to attach these

are at the base of the manipulator. At this position however, the operator could

not see much of the manipulator nor its environment, as it was hard to keep the

camera fixed at the required position. As a result, the camera was not used and

the operator had to look at the manipulator directly.

3.5.3 Associated Risks

While working on this project there were a number of associated risks that had to

be mitigated. The risks and their mitigation plans are detailed below:

• Tripping over cables: Make sure cables are put out of the way or covered

with anti-trip tape.
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• Falling in the water and drowning: Make sure there is someone else in

the room when working near the water tank.

• Electric shock if water comes into contact with faulty electrical

equipment: Keep electrical cables away from the water.

• Injuring yourself from being hit by the manipulator if within reach

and travelling at high speeds: Make sure no-one is within reaching dis-

tance of the arm when powered on.

• Injuring yourself when trying to lift weighted buoys out of the

water: Ask for help if the buoys are too heavy to manage yourself.
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Technical Challenges

During the development of the controller, there were a number of challenges that

needed to be addressed.

4.1 Coordinate Frames

When controlling the HDT manipulator, it is important that both the manipulator

and the Leap Motion have the same frame of reference. As the operator moves

their hand from left to right across the Leap Motion, it is expected that the

manipulator moves in the same manner, mimicking the operator’s movements.

However, as can be seen from the figures below (Fig. 4.1, Fig. 4.2) the Leap

Motion and manipulator have different coordinate frames. To correct this, the

following conversions are made when reading in the Leap Motion data.

Leap Motion X-axis = manipulator Y-axis

Leap Motion Y-axis = manipulator Z-axis

Leap Motion Z-axis = manipulator X-axis

28
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Figure 4.1: Leap Motion coordi-
nate system (Leap Motion [2016a])

Figure 4.2: HDT Adroit Manipu-
lator coordinate system

The orientation of the Leap Motion i.e. whether the front light is pointing towards

or away from the operator, can partly be ignored. This is due to the fact that

the Leap Motion has an automatic orientation feature. This feature results in

the +z-axis always being at the side of the Leap Motion that the operator is on.

However, this feature only works if the Leap Motion is placed flat on a surface

with the y-axis pointing straight up (Leap Motion [2016a]).

4.2 Calibration

4.2.1 Default Configuration

When the HDT manipulator drivers start up, the manipulator resets back to its

default configuration. This default configuration consists of all the joint state

values being set to zero, forcing the manipulator to adopt a straight down position

(Fig. 4.2). Both the position and orientation of the end effector are set relative to

the manipulator’s base link which is located at the top of the arm (Fig. 4.5).
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4.2.2 Initial Configuration

Due to the manipulator resembling a right hand, this controller is programmed

with the intention of the operator controlling the manipulator using their right

hand. Originally, the initial configuration (Fig. 4.3) was achieved by setting joint

7 of the manipulator to be equal to -1.55. This is the minimum position the

joint 7 value can reach without hitting its joint limit value of -1.57. When the

operator initially starts with their hand over the Leap Motion their wrist is bent.

It was thought that by having the manipulator’s initial position with the wrist

also bent it would provide a more intuitive controller. The trouble with this initial

configuration is that the manipulator is already at its full extension. However,

when the operator initially places their hand over the Leap Motion they are not at

their full extension. This often resulted in the operator lowering their hand, only

to hit a joint limit.

Figure 4.3: Old initial configuration

As a result of this limitation, an alternative initial configuration was chosen.

When the operator places their hand over the Leap Motion, as well as having a

bent wrist, they also have a bent elbow, with their hand perpendicular to their

shoulder (Fig 4.4). To ensure that the control of the manipulator is as intuitive
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and natural as possible, both the operator’s arm and the manipulator (Fig. 4.5)

need to have roughly the same starting pose.

Figure 4.4: Operator initial con-
figuration

Figure 4.5: HDT initial configu-
ration

4.2.2.1 Position

The operator’s hand was used to position the end effector at the desired position.

The manipulator was then paused and the relative position and orientation were

extracted relative to the base link. The resulting end-effector position is set as

follows:

posX = −0.268 (4.1)

posY = −0.070 (4.2)

posZ = −0.614 (4.3)

4.2.2.2 Orientation

As well as the position of the end-effector, the initial orientation of the end-effector

has to also also be set. The values were also extracted from the relative position



Chapter 4. Technical Challenges 32

between the base link transform and the end effector transform within the RViz

simulator.

roll = 3.136 (4.4)

pitch = −1.343 (4.5)

yaw = −3.134 (4.6)

Once these values are set, a transform is then published with the required position

and orientation. Inverse kinematics is then used to calculated the required joint

angles needed to place the end effector in the required position with the requested

orientation. Then joint values are then sent to the manipulator to set the initial

configuration of the manipulator.

4.2.3 Desired Configuration

The pose of the hand above the Leap Motion is taken to be relative to the last

read position and orientation. Once the initial position is set, a message appears

in the RViz simulator telling the operator to “place your right hand over Leap

Motion and press ‘s’ to start”. The operator has to hold their hand steady above

the Leap Motion device as this allows a baseline position and orientation to be

set. The desired position and orientation values can then be calculated relative to

this baseline.

4.2.3.1 Position

Due to the Leap Motion and the manipulator having different coordinate frames,

the change of hand position in the x axis is calculated using the following equation:

changeInXAxis = oldLeapPosZ − currentLeapPosZ (4.7)
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To calculate the new manipulator position, the change in Leap Motion position

must first be scaled. The scaling factor defines how sensitive the change in position

is relative to the movement of the operator’s hand. The scale factor was chosen to

be 0.005. This scaling factor was chosen by experimenting with different values and

analysing which value allowed the system to behave in the most natural manner.

scaledChangeInXAxis = (changeInXAxis ∗ scale) (4.8)

Once the scaled value is calculated, the required HDT manipulator position in the

x-axis is calculated using the following equation:

HDTPosX = HDTPosX − scaledChangeInXAxis (4.9)

This process is repeated for both the y and z axis.

4.2.3.2 Orientation

By changing the manipulator from its default straight down configuration into this

initial bent configuration, it affects the orientation control of the manipulator. The

orientation is controlled by the three end effector joints which are labelled joint 5,

joint 6 and joint 7. When the manipulator is straight down, the joints control the

orientation as follows:

Joint 7 = pitch Joint 6 = yaw Joint 5 = roll

However, when the manipulator is in its bent configuration, the joint control for

the orientation is changed:

Joint 7 = pitch Joint 6 = roll Joint 5 = yaw

This is due to a change in joint 7’s coordinate frame between the initial and default

configuration. As a result, the Leap Motion’s hand orientation is set relative to

the the initial orientation described in equations 4.4, 4.5 and 4.6. The yaw and

roll are switched due to this change in configuration.
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roll = −1 ∗ LeapY aw (4.10)

pitch = LeapP itch (4.11)

yaw = −1 ∗ LeapRoll (4.12)

A ROS coordinate transform is then created and published with the desired posi-

tion and orientation of the end effector relative to the base link. This transform is

visible within the RViz simulator and allows the operator to see where their hand

is relative to the manipulator. This information allows the operator position their

hand accordingly and make any corrections needed.

4.3 Controlling the Fingers and Thumb

The fingers and thumb on the end effector also need to be controlled. By controlling

these joints, it allows the operator to grasp different objects. The relative finger

joint positions and orientations are sent from the Leap Motion (Fig. 4.6).

Figure 4.6: Bones detected by Leap Motion
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Each of these fingers and their corresponding joint positions are published

as a transform which are visible in RViz. The finger grip is calculated using the

relative position and orientation between two bones.

4.3.1 Thumb

The end effector thumb has two degrees of freedom which control the thumb base

and the thumb proximal joints. The thumb base controls the left to right movement

while the thumb proximal controls the forward and backward movement. These

two grip positions are calculated using the relative rotation between the tip of the

thumb and index finger metacarpal. The thumb base and thumb proximal joint

values are calculated as follows:

thumb base = (x axis rotation ∗ baseScale) + baseCorrection (4.13)

thumb prox = (y axis rotation ∗ proxScale) + proxCorrection (4.14)

where:

baseScale = 2

baseCorrection = 0.5

proxScale = 1.5

proxCorrection: =1.2

The scale and correction parameter values were calculated experimentally. These

parameters are needed in order to control the end effector’s thumb from the Leap

Motion data. The scale is used to control the speed at which the end effector’s

thumb travels relative to the operator’s thumb. The aim is to have them matched

so when the operator moves their thumb the end effector mimics it. The correction
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value is used to set the end effector’s thumb’s initial position. The end effector

should reflect the operator’s thumb when it is in the neutral position. This allows

for the operator’s and end effector’s thumb position to remain synchronised.

4.3.2 Index and Middle Finger

The end effector has two fingers which each have one degree of freedom controlling

the finger proximal joint. The grip values of the index and middle fingers are cal-

culated using the relative orientation between each fingertip and the corresponding

metacarpal. The rotation between the two bones are calculated and the roll, pitch

and yaw are then extracted in radians. The roll is converted into degrees and is

then scaled. No calibration was needed when setting the finger’s as the operator’s

fingers naturally are close to being parallel with the palm, which is the same as the

end effector default position. The following equations are used to get the finger

proximal values.

roll in degrees = abs(roll ∗ 180.0/π) (4.15)

finger proximal vaue = roll in degrees ∗ 0.01 (4.16)

4.4 Inverse Kinematics

Once the end-effector position and orientation are specified, inverse kinematics is

used to calculate the corresponding joint values needed to move the end effector to

the given position. Inverse kinematics is complex as it can often result in multiple

solutions. There are two main approaches taken when solving inverse kinematics;

analytical and numerical. The analytical approach is mainly used when there are

a small number of links. The joint values are solved using geometry or algebraic

equations. However, it is often the case that a number of solutions may be found,

in which case additional constraints have to be applied. The numerical approach,
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also known as the iterative method, is more general and is used to find solutions

for more complex chains. Each of the joints are analysed in turn, and the rotation

needed for the end effector to move towards the required position is calculated.

pr2 moveit tutorials (ROS [2016c]) contain a good tutorial on how to use the

RobotModel and RobotState classes to calculate the inverse kinematics.

4.4.1 Orocos Kinematics and Dynamics Library

Within ROS, the most common inverse kinematic algorithm plugin is the Orocos

Kinematics and Dynamics Library (KDL) (Beeson and Ames [2015]). KDL uses

a numerical inverse kinematics implementation. The KDL solver has a number of

issues. These include “Frequent convergence failures for robots with joint limits;

no actions are taken when the search becomes ‘stuck’ in local minima; inadequate

support for Cartesian pose tolerances; no utilization of tolerances in the IK solver

itself” (Beeson and Ames [2015]).

As a result of these issues, the KDL solver often returns false-negative results

(Beeson and Ames [2015]). False-negative results imply that the solver fails to find

a solution when a solution exists.

4.4.2 TRAC-IK

Recently, a new inverse kinematics plugin has been released called trac-IK, which

is more reliable at finding solutions and finds solutions quicker. Trac-IK runs two

solvers simultaneously, once one of the solvers finds a solution, the solver stops.

When using the trac-IK kinematics plugin there are a number of parameters

that can be set (track IK [2016b]):

• ‘kinematics solver timeout’: Specifies how many seconds it takes to run the

solver before the function times out.
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• ‘position only ik’: Specifies whether to only use the position alone to calcu-

late the inverse kinematics or whether to use both the position and orienta-

tion.

• ‘solve type’: Calculates the inverse kinematics using different equations. The

allowed solve types are Speed, Distance, Manipulation1 and Manipulation2.

The default solve type is Speed.

For the purposes of this study, it was chosen to keep the ‘kinematics solver timeout’

parameter fixed at 0.005 seconds. However, different tests were carried out in or-

der to choose the boolean value for the ‘position only ik’ parameter as well as the

ideal solve type.

When using the kinematic plugin, the majority of the parameters are defined

within a file named kinematics.yaml. However, during the testing it was apparent

that setting the ‘solve type’ and ‘position only ik’ parameters in this file had no

effect and the default values were always being used. To overcome this issue,

the value of these two parameters were set directly in the controller program.

When initialising any ROS program, a node is created. A ROS nodeHandle was

then created for this given node. Using the setParam method of this nodeHandle

package, both the ‘solve type’ and ‘position only ik’ parameters were then set.

4.4.3 Position only Inverse Kinematics Parameter

The manipulator end effector has a position and orientation. However, when

calculating the inverse kinematics, the requested orientation of the end effector

is optional. When the boolean parameter ‘position only ik’ is set to true, the

orientation is ignored. Instead, the orientation of the end effector is allowed to

take any value that allows the end effector to reach the required position.

The graphs below investigate the behaviour of the end effector using position

only compared to using both position and orientation. For each case, the resulting

position and orientation are shown for the end effector y-axis. The solve type
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parameter is fixed as the default solve type. The requested value is shown in blue

and actual value of the end effector is shown in red. The x-axis represents the

joint state value while the y-axis is time.

Position

Figure 4.7: Position of end-effector y-axis with position only parameter set to
true

Figure 4.8: Position of end-effector y-axis with position only parameter set to
false
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Rotation

Figure 4.9: Rotation of end-effector y-axis with position only parameter set
to true

Figure 4.10: Rotation of end-effector y-axis with position only parameter set
to false

The results show that when the inverse kinematics solver ignores the orien-

tation, the actual position of the end effector accurately matches the requested

position (Fig. 4.7). However, as expected, it causes the orientation of the end

effector to behave in an erratic manner (Fig. 4.9). This would result in the end

effector being incapable of accurately picking up objects. The orientation of the

end effector is seen to be more stable when using both position and orientation

(Fig. 4.10). However, the inverse kinematics solver fails to find solutions as often

for the given position (Fig. 4.8). As a result of these findings, it was decided to use
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both the position and orientation of the end effector when calculating the inverse

kinematics of the manipulator as the orientation improvements outweighed the

position limitation. To implement this behaviour, the position only ik parameter

was set to false.

4.4.4 Solve Type Parameter

Within the trac-IK plugin (track IK [2016a]), there are four different methods

that can be used to solve the inverse kinematics. These methods are speed, dis-

tance, manipulation1 and manipulation2. The ‘speed’ solve type returns the first

solution found in the fastest possible time. The ‘distance’ solve type returns the

solution that minimises the change of the joint values required by the manipula-

tor. The ‘manipulation1’ solve type returns a solution that avoids situations in

which the arm would be folded up too close or stretched out too far from the base.

‘Manipulation2’ solve type is a variation of the manipulator1 solve type.

With the ‘position only’ parameter set to false, the different solve types were

compared using the y-axis position of the end effector and a fixed timeout speed of

0.005 seconds. The required end effector position is shown as the blue line. This is

compared to the actual end effector position which is shown as the red line. The

x-axis represents the joint state value while the y-axis is time.

Figure 4.11: Solve type: Speed
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Figure 4.12: Solve type: Distance

Figure 4.13: Solve type: Manipulation 1

Figure 4.14: Solve type: Manipulation 2
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Ideally, the actual position of the end effector should be identical to the re-

quested position. As can be seen in the graphs above, none of the solvers follow

this line perfectly. However, manipulation1 solve type (Fig. 4.13) seems to behave

the best when comparing requested and actual position.

4.4.5 Publishing Joint States

When requesting the inverse kinematics solution for a given position and ori-

entation it is not always the case that a solution is found. This is due to the

manipulator not having a joint state configuration that allows the end effector to

reach the requested position with the given orientation. This may be due to the

position being out of the manipulator workspace or having reached a singularity.

In this case, no joint values are published, keeping the manipulator in the same

position.

If a solution for the inverse kinematics is found, the calculated joint state

values are published. These values are then used to update the manipulator joints

to position the end effector. Additionally, the resulting position and the orienta-

tion of the end effector are published. The allows the system to constantly keep

track of the end effector’s location. This information is used when unlocking the

manipulator after being paused as it allowed the operator to position their hand

back into the correct position.

4.5 Stabilising Values

In the initial experiments using the simulator, both the input signals from the

Leap Motion and the output signals sent to the manipulator appeared sharp and

erratic as can be seen in Fig. 4.13. While an aggressive controller is not an issue

in the simulator, when applied to the HDT manipulator it can cause the arm to

become erratic which in turn could damage the hardware.
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The controller works as an open loop system, meaning that the output does

not feed back into the input to stabilise it. An open loop system was chosen as

the operator tends to move their hand too quickly for closed loop system to be

beneficial. It is therefore important to smooth the signals, while making sure that

the operator still feels in control of the manipulator.

Damping filters were applied to both the input signals, reading the data from

the Leap Motion, as well as the output signals, passing joint states to the ma-

nipulator. By filtering the input signal, small perturbations from the operator’s

hand were discarded by applying bound limits, and the signal noise was reduced

using a mean filter. This minimised the number of unnecessary inverse kinematics

calculations. The output signal was filtered to create a smoother trajectory using

an α - β filter, as well removing any signal spikes using a median filter. The ve-

locity of the manipulator was also varied to further control the trajectory of the

manipulator when performing large movements.

4.5.1 Input Stabilisation

When reading the Leap Motion hand and finger signals, it is important to make

sure the signals are smooth and stable. This minimises the chance of the output

signal being erratic.

4.5.1.1 Bounds

When the operator holds their hand still above the Leap Motion a straight line is

expected on the position graph (4.15) with the x, shown in dark blue, y, shown in

red, and z, shown in light blue, position remaining fixed. As can be seen in figure

4.15, without any form of damping this is not the case. The x-axis represents the

Leap Motion position value while the y-axis is time.
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Figure 4.15: Leap Motion raw input

The Leap Motion is an extremely sensitive device. Natural hand tremors are

detected by the Leap Motion even when the operator’s hand appears stationary.

Limits are set so the operator’s hand appears to be at a constant position when

stationary. The position is only updated when the change is more than 0.009 and

the orientation is only updated when the change is more than 0.05.

4.5.1.2 Mean Filter

As well as applying bound limits on the Leap Motion input, a mean filter is also

applied to the signal to further reduce noise. The mean filter is calculated by

taking the mean of a sample number of values. For this controller, a small window

of four is used to create smoothing while keeping the lag to a minimum.

4.5.2 Output Stabilisation

When outputting the joint values, it important that the signal is smooth, without

any sudden spikes. This reduces the chance of the manipulator moving erratically

and damaging itself.
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4.5.2.1 Joint Limits

When the end effector moves from left to right, it eventually reaches a singularity.

This means that the manipulator is unable to move the end effector further right no

matter how it moves its joints. If the operator continues moving their hand to the

right, the required position becomes reachable. However, to reach this position the

base of the end effector has to flip past the centre point to the other side. When

doing this flip, it is important that the manipulator rotation is completed in a

controlled manner. It is possible to control both the position and the velocity of the

joint states. The maximum velocity of the HDT manipulator is 2.6 radians/second,

however to control the manipulator better the velocity was set to 0.5. When

passing from left to right, some joints pass the 0 values centre line and flip from

being positive to negative or vice versa. This sudden flip can be controlled by

slowing down the velocity and setting the value to 0 as an intermediate point.

4.5.2.2 Alpha-Beta Filter

As explained in Jamwal [2012], the α - β filter uses estimation to apply data

smoothing. The α - β filter is applied before sending the stabilised joint values

to the manipulator. This filter allows the movement of the manipulator to be less

erratic. The α - β filter value is calculated as follows:

Prediction equations: The predicted position and velocity of the specified joint

are calculated using the previous position and velocity for a given sample time.

xp(n) = xp(n− 1) + (vp(n− 1) ∗ δt) (4.17)

vp(n) = vp(n− 1) (4.18)

Error equation: The actual position and the predicted position are compared

to get the error between them.
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ε = x(n) − xp(n) (4.19)

Smoothing equations: The newly calculated smoothed position and velocity are

then calculated. The error is multiplied both to the α and β values. The α value

controls the magnitude of damping with larger α values causing less damping. The

β value controls surges in the velocity with low values causing less of a surge.

xp(n) = xp(n) + α ∗ ε (4.20)

vp(n) = vp(n) + (β ∗ ε)/δt (4.21)

Update equations: The old position and velocity values are updated with the

newly calculated values.

xp(n− 1) = xp(n) (4.22)

vp(n− 1) = vp(n) (4.23)

where:

xp(n): Predicted position. This value is initially set to zero.

xp(n− 1): Previously predicted position.

vp(n): Predicted velocity. This value is initially set to zero.

vp(n− 1): Previously predicted velocity.

x(n) : Current requested joint value.

ε: Error between predicted position and requested position.

δt: Sampling time interval. A smaller time step results in a smoother signal.

This value was set as 0.5.

α: Controls the level of damping. This values was set as 0.4.

β: Controls surges in velocity. This values was set as 0.005.
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4.5.2.3 Median Filter

A median filter is used to remove any spikes in the values and smooth out the

trajectory of the manipulator. The median filter value is calculated by taking the

median of a sample number of values. For this controller a small sample size of 5

is used to create smoothing while keeping the lag to a minimum.

4.5.3 Dynamic Reconfiguration

Most of the filters described have parameters that can be varied to provide a

different output behaviour. In the case of the α-β filter the values of α, β and the

sample time can be altered and in the case of both the median and mean filter the

sample size can be altered. The use of a dynamic reconfigure aids in choosing the

desired variable values. ROS has a package called ‘dynamic reconfigure’ ( ROS

[2016a] ) that allows the operator to set a number of reconfigurable variables. The

dynamic reconfigure program displayed a slider for each variable. This enabled the

variable values to be frequently altered while the program was running, allowing

the values to be chosen once the ideal manipulator behaviour was observed.

4.6 Operator commands

4.6.1 Simulator

The simulator was used when simulating the manipulator as well as acting as

an aid when controlling the real HDT manipulator. This is due to the need for

feedback information being displayed on the screen. It is hoped that in the future,

this information can be overlaid directly on to the real-time visual feedback from

the manipulator, thereby removing the need for the simulator in this case.
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4.6.2 Keyboard

The keyboard is used for both starting and pausing the controller. Initially, it had

been hoped that the operator could use the detection of their left hand to control

the pause mechanism of the system. Unfortunately, the current version of the

Leap Motion software does not deal well with occlusion. Occlusion occurs when

the operator’s hands are overlapped, making it difficult for the Leap Motion to

differentiate between the two hands. As a result, the left hand was not recognised

consistently enough for this to be a plausible method. Instead, a keyboard press

(ROS [2016b]) was used.

4.6.3 Starting the Program

To give the operator time to position their hand above the Leap Motion, the

system starts only once the ‘s’ key is pressed. Once pressed the operator has full

control of the manipulator.

4.6.4 Pausing and Resuming the System

It was found in the literature to be important to have a mechanism that allows

the operator to pause the system. Without this, the operator has no way of

resting their hand and arm. This would result in the operator becoming tired

after controlling the system for long periods of time.

4.6.4.1 Pause

To pause the system, the operator presses the ‘space’ key. This causes the manip-

ulator to remain fixed at its current position. This allows the operator to remove

their hand and step away from the computer. A message is displayed on the RViz

simulator informing the operator that the system is now paused.
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4.6.4.2 Lock

The system is resumed by pressing the ‘space’ key. Once the system is resumed it

is important for the operator to have their hand in the correct position in relative

space. This prevents the manipulator from being damage due to it jumping rapidly

to another location. Additionally, without this, the operator’s hand would no

longer be synchronised with the manipulator’s end effector position. To help the

operator position their hand correctly, the system remains locked until the operator

is within a range of +
− 0.07 meters from the end-effector’s last valid position. A

smaller range would make it hard for the operator to position their hand correctly,

while a larger range would increase the chances of the manipulator jumping. A

coloured sphere appears within the RViz simulator, giving the operator a visual

guide as to where to place their hand. A message is displayed to the operator

within the RViz simulation informing them that the program is locked and that

they have to place their hand over the sphere to unlock. Once the operator’s hand

is within the sphere the system is unlocked, allowing the operator to continue

teleoperating the system.
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Findings

5.1 Introduction

Timed trials and a questionnaire were used to test the stated hypothesis. This

hypothesis aimed to prove that a gesture control input would provide a more

intuitive method of control compared to the HOCU controller.

Each operator had to try and complete a set task, which was repeated three

times, in the shortest possible time. After completing the three tries, the operator

then had to complete a questionnaire . All operators completed this process on

both the Leap Motion controller and the HOCU. The task and the questionnaire

were designed to explore how the Leap Motion controller compared to the HOCU

in terms of intuitiveness, manoeuvrability, ease of use and comfort. Once all the

data was recorded, the averages were taken for all timed trials on each device and

the scores for the questions were averaged for each device.

A copy of the questionnaire can be found in Appendix A, the individual

operator questionnaire responses can be found in Appendix B, the operation in-

structions given to each operator can be found in Appendix C, while the individual

trials times can be found in Appendix D.

51
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5.2 Task

The task set for each trial was to hit a buoy to the left of the manipulator, wait for

10 seconds while remaining in contact with the buoy and then proceed to hit the

other buoy to the right of the manipulator. The elapsed time to hit the right buoy

and the elapsed time to complete the full task were measured. The cut-off time for

completing the whole task was set to 5 minutes 30 seconds.This time was chosen

as a result of a number of tests. Any trial where the operator did not complete

the task within the cut off time was viewed as a failed attempt.

Figure 5.1: Results of the timed trials

As can be seen from the graph, when using the Leap Motion system, the op-

erators managed to complete the task nearly every time. While using the HOCU,

none of the operators managed to complete the task. When trying to reach the

right buoy the manipulator consistently hit joint limits when using the HOCU,

making the manipulator hard to control. This caused the manipulator to become
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erratic. This occasionally resulted in the manipulator having to be restarted as

there was a risk of the manipulator damaging itself.

The manipulator drivers would often disconnect themselves, only reconnecting

once the manipulator had been restarted. The cause of this issue was traced back to

a loose connection that was disconnected when the manipulator moved erratically.

The above issues limited the ability to collect reliable experimental data for the

HOCU. The Leap motion got round the issue of joint limits by ignoring them

and remained in a fixed position until the operator specified a position that the

manipulator could reach.

While the HOCU failed to complete the task, it may be the case that this was

due to software faults rather than hardware. Had the software been able to deal

with joint limits better it may have proved to be as successful or more so than the

Leap Motion when completing the timed trials. However, the HOCU hardware

was still the cause of a number of issues addressed in the questionnaire.

5.3 Questionnaire

As well as the time taken to complete the task, it was important to gauge the

operators feeling of intuitiveness, ease of use and comfort. This information was

collected using a questionnaire. The questionnaire asked five questions which

checked how intuitive the device was, how easy it was to take a break, how painful

it was to use it, the device precision and control. Operators were asked to give

each question a rating between 1 and 5, where 1 indicated a low response to the

question.
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Figure 5.2: Results from the questionnaire

Intuitiveness

All three participants found the Leap Motion to be more intuitive than the HOCU

controller. The Leap Motion and manipulator positions were synchronised, allow-

ing the user to move their hand left and right and the manipulator to follow. As

the operator’s hand is fixed to the joystick, it was hard to move in three dimensions

intuitively.

Pausing

The only point when the Leap Motion lagged compared to the HOCU was when

pausing. To pause the HOCU, the operator can just let go of the joystick. However,

as expected, this would not work using the Leap Motion as the Leap Motion is

controlled using relative hand position. Currently, the pause operation is controlled

by the space key on the keyboard. However, it is hoped that with the Orion

improvements developed for the Leap Motion in future works the detection of

the operator’s left hand can be used to pause the system. This would allow the

operator to remain focused on keeping their hand steady while pausing. This
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removes the need for the operator to shift their concentration onto the keyboard

to find the space key.

Discomfort

In general, users found that using the HOCU caused them more pain than when

using the Leap Motion. To move the manipulator using the HOCU, the operator

must push and pull the joystick with reasonable force. This causes the operator’s

hand to become strained after using the HOCU for a while. Although the results

indicate that the Leap Motion did not cause as much pain as HOCU, some pain

was felt due to holding their hand above the Leap Motion for an extended period.

Precision

On average, the Leap Motion was found to be more precise. The Leap Motion gives

sensitive readings and this allows the operator to make small, precise adjustments

to the manipulator position.

Control

The findings indicate that relative to HOCU, the Leap Motion allows the operators

to feel more in control of the manipulator. During the trials, when the HOCU hit

joint limits, it would often act in an unpredictable and erratic manner. This made

it hard for the operators to feel in control of the manipulator as the manipulator

often behaved differently to what the operators expected.



Chapter 6

Conclusion

6.1 Introduction

This research aimed to find a stable and intuitive way of interacting and controlling

an underwater manipulator during teleoperation. The research findings suggest

that using a gesture control input device, such as the Leap Motion instead of the

HOCU, is a viable option. This chapter summarises the findings and discusses

possibilities for future work.

6.2 Summary of Findings and Conclusion

A literature review of this subject area revealed that there are many different in-

put control mechanisms. Examples of these include data gloves, stereo cameras

and depth aware cameras. Following an evaluation of the different controllers,

gesture control was found to be the most suitable form of input for teleopera-

tions. Amongst the different available gesture control devices, the most popular

technologies appear to be the Leap Motion and the Kinect. For this research, the

Leap Motion was seen as the better option. This was due to the Kinect’s lack of

finger tracking which meant that an additional device would have to be used to

control the end effector’s fingers and thumb.

56
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There a number of challenges that need to be considered when designing a

teleoperation controller using the Leap Motion. For example, the initial calibra-

tion of the manipulator has to be set in order for the operator and the manipulator

to have similar starting positions. This allows for a more natural controller. Addi-

tionally, to get the required joint state values, inverse kinematics has to be applied

on the requested end effector position. Before these joint state values can be sent

to the HDT manipulator they have to be stabilised. This is important as the

manipulator trajectory has to be smooth to minimise the risk of damaging the

hardware. Lastly, it is important that when unlocking the system the operator

position their hand such that it is in the same relative 3 dimensional space as the

manipulator.

It was found that relative to the HOCU controller, the Leap Motion device

provides a more intuitive method of controlling the HDT Adroit Underwater Ma-

nipulator. Using a gesture controlled device creates a more natural and intuitive

teleoperation system, which improves the operator’s control of the manipulator.

This finding is based on a number of experiments using simulation and a manip-

ulator with no attached end-effector.

6.3 Recommendations

While the research findings proved to be a success, further improvements to allow

for a more natural method of operation known as telepresence can be pursued.

Telepresence relies on the operator receiving multiple inputs, such as visual and

tactile feedback. This enables the operator to feel as though they are at the

operation site, resulting in a more intuitive controller.

6.3.1 Software Development

While gesture control has come a long way in the past few years, there is still

extensive research being conducted to improve the controller’s limitations. One
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of the main limitations with the Leap Motion is its ability to deal with hand

occlusion. A new version of the Leap Motion software, which they have named

Orion, has recently been developed. Within Orion, it is stated that the occlusion

issues are fixed, however currently this software is only available on the Windows

operating system.

6.3.2 Visual Feedback

6.3.2.1 Virtual Reality Headset

Recently there has been a lot of focus on virtual reality (VR) headsets such as

the Oculus Rift. Both the Kinect and Leap Motion software are now compatible

with such headsets. These head-mounted displays (HMD) allow the operator to

view the environment from the perspective of an external camera, mounted on

the hardware. This camera can then be controlled using the movement of the

operator’s head resulting in an more natural control system (Almeida et al. [2014]).

In addition, it allows the operator to feel as if they are physically located at the

site, a feeling known as embodiment.

6.3.2.2 Embodiment

Physical embodiment in teleoperation helps improve the performance of the op-

erator’s task (Almeida et al. [2014]) as it improves the ease of use. Physical

embodiment relies on the operator perceiving synchronous actions and sensations.

In order to make sure the system is synchronous, special focus is needed on

the lag of the system. If there is too much lag the movements stop feeling natural

and the sense of ownership within embodiment is effected (Aymerich-Franch et al.

[2015]). The lag time that the hardware can have, while still feeling natural, needs

to be investigated.

Additionally, when looking at a free hand in space it is hard for the operator

to associate with the free hand as being part of their body. However, it may be
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the case that by overlaying a body around the manipulator the operator will feel

more connected to it.

6.3.2.3 Camera

When using the movement of the operator’s head to control a camera, three main

topics need to be considered:

• Camera position: For the operator to experience the feeling of embodiment

the camera needs to be in the same position as the operator’s head would be

relative to the manipulator. As a result, the operator would feel as though

they were looking at their arm and hand. If the camera is in the wrong

position, the feeling of embodiment would be lost as what the operator saw

would not line up with their normal view of their body.

• Camera control: As well as the position of the camera, the movement of

the camera also needs to be considered. The human head is capable of a

wide range of movements. Ideally, a camera is required that is capable of

performing the same movements as the operator’s head.

• Balance: Another thing to consider is balance. Once a camera is attached,

the centre of balance of the manipulator is likely to change. Depending on

the size of the camera relative to the manipulator there is a chance that this

will affect the control of the manipulator.

6.3.3 Tactile Feedback

6.3.3.1 Haptic Devices

One of the leading fields of research which would allow for tactile feedback is the

development of haptic devices. Tactile feedback would allow the operator to feel

as if they were directly touching the object that the end effector was grasping.

This would allow the operator to adjust the strength of their grip appropriately.
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There are many different variations of haptic feedback devices that are cur-

rently being developed that can compliment gesture control devices. These in-

clude devices that can be clipped on the operator’s fingers, which use pistons or

expandable air pockets to apply force on to the operator’s fingers. Another new

development is the use of ultrasound waves to provide mid-air haptic. While these

devices are still being developed it is hoped that they would be a viable option in

the near future.

6.3.3.2 Touch Sensors

As well as providing feedback to the operator, the end effector needs to receive

feedback from the object it is grasping. There are many sensing devices available

such as capacitive sensors, strain gauge sensors and piezoelectric sensors. Provid-

ing a sense of touch would significantly improve the grasping capabilities of the

end-effector.

6.4 Contribution to Knowledge

Currently available teleoperation controllers are often unnatural and unintuitive

to use and require extensive training. This research has shown that a gesture

control based input is a natural and intuitive means of teleoperation. Controllers

that allow operators to use a more natural interaction to control underwater ma-

nipulators will save time and money by eliminating the required operator training

and will enable a larger number of operators to control underwater manipulators.

With advances in research and development of tracking software, virtual reality

and haptics, we are now on the verge of creating the feeling of embodiment within

teleoperation. This should deliver a more intuitive means of telepresence for un-

derwater manipulators.
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Appendices

A Questionnaire

On a scale of 1 (Low) to 5 (High) :

• Question 1: How intuitive did you find the device

• Question 2: How easy did you find taking a break from using the device

• Question 3: How tired or sore did you feel after using the device

• Question 4: How precise did you feel the device was when controlling the

manipulator

• Question 5: How in control of the manipulator did you feel when using the

device
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B Questionnaire Results

On a scale of 1 (Low) to 5 (High) :
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C Operation Instructions

Leap Motion

Start

• Hold your right hand directly above the Leap Motion device with your palm

facing downwards. Your hand should be around 20 cm above the sensor.

• When you are ready press the ’s’ key on the keyboard keeping your hand

still

• Once the leap motion axis appears on the RViz simulation you can then

move your hand to control the manipulator

Pause

• Pause and resume are controlled by toggling the space key

• Instructions on how to gain control of the manipulator after pausing it are

shown on the RViz simulation screen

HOCU

Start

• The start button is pressed (See HOCU screen for button names)

Home

• The home button resets the manipulator back to its original position

Once the arm is set to home, the joystick can be held. In order to move the arm

the button on the joystick must be held in .
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D Trial Times
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