
Intelligent	Robotics	
Assignment	1	–	iCubSim	Robotics	Project	

	
	

Aim		
The	aim	of	this	report	was	to	further	investigate	visual	attention	and	close	the	interaction	
loop	between	the	robot-simulation	(its	point	of	attention)	and	a	visual	input.	This	was	
carried	out	by	implementing	part	of	a	multi-scale	saliency	model.				

	
The	iCub	was	placed	in	front	of	a	screen	which	showed	a	bi-coloured	jagged	splodge	image	
which	moved	around	the	screen.	The	software	had	to	read	out	this	image	from	the	iCub	
camera	and	apply	several	filters	to	it.	This	then	allowed	circle	detection	to	be	applied	
allowing	the	iCub	to	follow	the	image	around	the	screen.		
	
This	report	captures	project	implementation	steps,	the	issues	encountered	during	the	
process	and,	the	steps	taken	to	overcome	the	issues.		It	is	divided	into	a	number	of	stages,	
each	with	one	or	more	steps	that	were	followed	in	sequentially.	
	

Setup	

1. Set	up	server:	Start	the	yarpserver	using	the	“yarpserver”	command.	
2. Start	iCub	simulator:	Run	the	“icub_Sim”	command	from	the	location	of	the	iCub_parts	

_activation.ini	.	
3. Open	a	yarpview	window:		Open	using	the	yarpview	–name	/view/left	command	
4. Generate	&	project	image	on	to	screen:	This	is	a	two-part	command	that	involves:	

i. The	test	grabber:	yarpdev	--device	test_grabber	--name	/test/video	--mode	ball	
ii. Connect	the	video	to	the	screen:	yarp	connect	/test/video	

/icubSim/texture/screen	
5. Enable	iCub	head	movement:	Make	sure	that	ikinGaze	is	running	in	order	to	send	

commands	to	it	and	move	the	icubs	head:	
“C:\Program	Files	(x86)\robotology\icub-1.1.16\bin\iKinGazeCtrl”	--robot	icubSim	

	

Method	
	
The	first	step	was	to	read	the	image	from	the	iCub	camera	video	stream	into	the	program.	
This	was	achieved	by	connecting	a	self-defined	port	to	the	camera	port	(in	this	case	the	left	
camera	was	chosen).	It	was	then	possible	to	read	from	the	self-defined	port	and	return	the	
image	as	an	ImageOf<PixelRgb>	format.				
	
The	next	step	was	to	get	the	simulator	to	look	at	the	screen	while	a	video	was	shown	to	it.	
By	default,	the	iCub	looks	straight	ahead	at	the	screen	(Figure	1).	If	the	screen	isn’t	visible	it	
may	be	due	to	it	being	set	as	‘off’	in	the	iCub_parts	activation.ini	.	Note	that	the	video	
should	already	be	visible	to	the	iCub	due	to	the	test_grabber	commands	used	in	the	setup.		



	

	
Figure	1:	icub	looking	at	the	projected	video	

	
	

	
Image	Filtering	
Several	linear	filters	were	then	applied	to	the	image	read	in	by	the	camera.	This	was	
achieved	by	using	openCV.	In	order	to	apply	these	filters,	the	image	needed	to	be	converted	
from	a	yarp	image	to	openCV	Mat	form.	It	was	then	possible	to	show	this	image	in	an	
external	window	as	openCV	form	(Figure	2).		
	

	
Figure	2.	Image	from	screen	with	no	filter	

	
The	aim	of	the	linear	filtering	was	to	get	the	image	as	clear	as	possible.	First	off,	the	image	
was	converted	to	grey	scale	and	then	two	additional	blur	filters	were	applied.	
	
By	converting	the	image	to	grey	scale	the	image	was	simplified	as	the	image	then	appeared	
as	two	circle	of	similar	colours	(Figure	3)	compared	to	the	contrasting	green	and	yellow	of	
the	non	filtered	image.			



	
	

	
Figure	3:	Image	in	grey	scale	

	
	
The	blur	filter	allowed	the	edges	of	the	circle	to	be	smoothed	(Figure	4).	This	helped	when	
applying	the	circle	detection	in	a	later	stage.	
	

	
Figure	4:	Image	with	blur	applied	

	
By	adding	the	Gaussian	blur	as	well	this	allowed	the	image	to	be	smoothed	out	further	into	
a	smooth	perfect	circle	(Figure	5).		



	
Figure	5:	Image	with	Gaussian	blur	applied	

	
	
The	resulting	image	with	all	the	filters	produced	a	nice	smooth,	single	coloured	grey	circle	
(Figure	6).		
	

	
Figure	6:	All	filters	

	
	
	

This	image	was	then	converted	back	into	a	yarp	image	so	it	could	be	shown	in	yarpview	
(Figure	7).		



	
Figure	7:	Filtered	image	in	yarpview	

	
Circle	Detection		
Circle	detection	was	then	applied	on	the	filtered	image	using	Hough	Circle	Transform	(Figure	
8).		Three	separate	loops	were	use	to	find	the	best	values	for:	minimum	distance	between	
detected	centres,	upper	threshold	for	the	internal	Canny	edge	detector	and	threshold	for	
centre	detection.	By	altering	these	values,	it	was	possible	to	find	the	ideal	circle	detection	
for	the	filtered	image.	Once	the	circle	was	obtained,	the	centre	of	the	circle	could	then	be	
passed	back	as	a	point	with	an	x	and	y	value.	This	circle	edge	and	centre	can	then	be	shown	
on	top	of	the	original	image	
	

	
Figure	8:	Hough	Circle	Transform	detection	

	
Controlling	the	movement	of	the	icub	head	
The	iCub’s	head	needed	to	be	controlled	with	the	program	in	order	to	follow	the	circle	that	
was	visible	on	the	screen.	In	order	to	control	the	iCub’s	head,	the	ikinGaze	controller	was	
used.		Rescaling	was	needed	to	go	from	windows	view	which	is	240x320	to	ikinGaze	view.			
	
ikinGaze	takes	three	parameters:	

1. The	x	axis:	looking	into	the	distance	(negative	number).	I.e.		-3.0	is	looking	3	m	in	
the	distance.	



2.	The	y	axis:	looking	left	and	right	(chose	values	from	-0.25	to	0.25)	
3.	The	z	axis:	looking	up	and	down	(chose	values	from	0.2	to	0.6)		
	

Problems	Overcome	
	
There	were	several	issues	the	were	addressed	during	this	project.		
	

• OpenCV	with	Yarp:	There	were	issues	setting	up	the	cmake	file	correctly.	This	was	
needed	in	order	to	openCV	and	yarp	working	simultaneously.	The	solution	involved	
adding	the	include	and	link	directories	for	both	openCV	and	Yarp.		

	
• Writing	to	Yarpview:	When	trying	to	send	the	image	back	to	yarpview	it	was	a	

struggle	know	how	to	write	an	image	back	to	the	port.	In	the	end	the	output	port	
was	prepared	with	the	yarp	image	which	could	then	be	written	to	the	port.		

	
• Colour:	Some	times	the	image	wanted	RGB	and	other	times	it	wanted	BGR.	When	

reading	the	image	from	the	camera	it	was	read	in	as	Rgb.	However,	when	writing	the	
image	back	to	the	yarpview	it	was	written	as	a	Bgr.	This	is	due	to	colour	conversion	
when	changing	between	Yarp	and	openCV.		

	
• Circle	detection:	Circle	was	not	perfect.	As	a	result,	occassionaly	it	detected	more	

than	one	circle	resulting	in	two	centres	just	off	from	each	other.	This	could	have	
been	solved	by	playing	around	with	the	variable	values	more	to	achieve	a	single	
circle	each	time.		

	
• Detecting	head	movement:	The	icub’s	head	occasionally	wobbled	and	the	

movements	were	not	large	obvious	ones.	This	made	it	a	struggle	to	figure	out	
whether	the	robot	was	actually	focusing	on	the	circle	or	just	wobbling	its	head.	
When	a	sleep	was	put	in,	to	make	sure	the	iCub	moved	its	head	fully,	the	
movements	became	more	obvious		

	
	
	


