
Heriot-Watt University
School of Engineering and Physical Sciences

Group members: Roshenac Mitchell, Markus Lampert, Nurgaliyev Shakh-
 Izat, Samir Mammadov, Hugo Sardinha, Waqar Khadas

Modelling, Simulation
and control of a
humanoid robot 	

Inserting a pin to a hole using
DARWINOP

Table	of	Contents	

1	 Introduction	..	4	
1.1	 System	overview	..	4	
1.2	 Specification	..	5	

2	 Robot	design	and	simulation	...	5	
2.1	 The	Robotics	Simulators	...	6	

2.1.1	 Webot	Robot	Simulator	..	6	
2.1.2	 Features	..	7	

2.2	 Technical	information	..	7	
2.3	 The	Robotics	World	..	7	
2.4	 Simulation	with	the	control	of		Darwin	Robot	..	8	

2.4.1	 Simulation	model	..	8	
2.4.2	 Cross-compilation	...	9	
2.4.3	 Remote-control	..	10	

3	 Software	Development	...	10	
3.1	 Requirements	..	10	

3.1.1	 Specs	...	11	
3.2	 Analysis	...	11	

3.2.1	 Use	Cases	..	11	
3.3	 Design	..	12	

3.3.1	 Case	Diagram	..	13	
3.4	 Implementation	...	13	

3.4.1	 findTarget	...	14	
3.4.2	 walkToTarget	..	15	
3.4.3	 interactWithTarget	...	15	

3.5	 Challenges	...	16	
3.6	 Further	Work	...	17	

4	 Design	...	17	
4.1	 CAD	Software	...	17	
4.2	 Process	..	18	

4.2.1	 Measurements	..	18	
4.2.2	 3D/2D	Modelling	..	20	
4.2.3	 Manufacturing	..	21	

5	 Electronics	–	Custom	Intelligent	Servo	..	22	
5.1	 Introduction	to	Intelligent	Servos	(referred	as	IS)	...	22	

5.1.1	 Definition	..	22	
5.1.2	 MCU	Inside	...	22	
5.1.3	 Communication	..	22	
5.1.4	 Key	Features	...	23	

5.2	 Custom	Intelligent	Servo	..	23	
5.2.1	 Requirement	Analysis	...	23	
5.2.2	 Intelligent	Servo	-	Our	Approach	..	24	
5.2.3	 Critical	Evaluation	of	the	Custom	Intelligent	Servo	Approach	..	24	
5.2.4	 Learning	Outcome	..	25	
5.2.5	 Reality	...	25	

6	 Simplified	Intelligent	Servo	...	25	
6.1	 Selected	Servo	...	25	

6.1.1	 Design	of	Power	Supply	..	25	
6.1.2	 Linear	voltage	regulator	design	..	26	
6.1.3	 Servo	Movement	..	26	
6.1.4	 Servo	Rotation	Principle	...	28	
6.1.5	 Generation	of	pwm	using	Arduino	platform	..	28	

7	 Conclusion	and	discussion	...	29	
	
	 	

1 Introduction	
A humanoid robot is a robot that has a general structure of the human body, such as two

legs, two arms, a torso, and a head (Williams, 2004). Although, some shapes of a humanoid
robot may not be exactly the same as that of a human, a humanoid robot has a basic similar
appearance and functions of a human. For its human-like features described above, a humanoid
robot has a potential to conduct tasks in human environments. Furthermore, a humanoid robot
may even use tools designed for a human without modification. The development purpose of a
humanoid robot is to make a robot that thinks and acts like a human (Williams, 2004). At the
end, the humanoid robot will do work on behalf of a human, and a human can concentrate on
more productive activities. The other significant development purpose is to understand mental
and physical fundamentals of a human. So, many researchers from different fields adopt
humanoid robots for their research platform for its synthetic characteristics.

The aim of this project is inserting a pin to a hole using Darwin-Op robot. To solve this
iterative problem, a humanoid must be constructed considering expandable-modifiable system
structure, high performance, simple maintenance, familiar development environment, and
affordable prices. Therefore, in this paper, we suggest the design method for humanoid platform
DARwin-OP (Dynamic Anthropomorphic Robot with Intelligence - Open Platform) as shown in
Fig. 1 which has a network based modular structure and a standard PC architecture to meet
above requirements (Ha, Tamura and Asama, 2013).

Darwin-OP is an affordable, miniature-humanoid-robot platform with advanced
computational power, sophisticated sensors, high payload capacity, and dynamic motion
ability to enable many exciting research and education activities (Ha, Tamura and Asama, 2013).

	
Figure	1:	Darwin	Robot

1.1 System	overview	

DARwIn-OP has a network-based modular structure and a standard PC architecture, as
shown in Figure 2. All devices, such as actuators, sensors, LEDs, buttons, and external I/Os, are
connected to the sub-controller by a serial bus network which fully supports DYNAMIXEL
protocol (Ha, Tamura and Asama, 2013). Each device has a memory-mapped operation structure
with designated ID. For the main controller, we adopted the Intel’s ATOM Z530 CPU, normally
used for netbooks (Ha, Tamura and Asama, 2013). The main controller communicates with the
sub-controller by USB. The sub-controller works as a gateway to access devices. Therefore, all

devices are encapsulated as an USB device, which means that the development environment is
just like a standard PC (Ha, Tamura and Asama, 2013).

	
1.2 Specification		
- Default walking speed: 24.0 cm/sec (9.44 in/sec) 0.25 sec/step - user modifiable gait
- Default standing up time from ground: 2.8 sec (from facing down) and 3.9 sec (from facing up)
- user modifiable speed
- Built-in PC: 1.6 GHz Intel Atom Z530 on-board 4GB flash SSD
- Management controller (CM-730): ARM CortexM3 STM32F103RE 72MHz
- 20 actuator modules (6 DOF leg x2+ 3 DOF arm x2 + 2 DOF neck)
- Actuators with durable metallic gears (DYNAMIXEL MX-28)
- Self-maintenance kit (easy to follow steps and instructions)
- Standby mode for low power consumption
- 3Mbps high-speed Dynamixel bus for joint control
- Battery (30 minutes of operations), charger, and external power adapter
 (Battery can be removed from robot without shutting down by plugging in external power
before removal)
- Versatile functionality (can accept legacy, current, and future peripherals)
- 3-axis gyro, 3-axis accelerometer, button x3, detection microphone x2

	
Figure	2:	Darwin-op	structure

2 Robot	design	and	simulation		
We will perform the modeling, simulation and control of a humanoid robot – DARWIN to

give some demonstrations to show the capability of the humanoid robot. It will cover the
simulation of the motion of the robot using Webot, Solidworks , Proteus and C++ software.
This model must include at least the servo module, trajectory planning module, inverse
kinematics module and all forward kinematic module if needed.

2.1 The	Robotics	Simulators	

A robotics simulator is used to create embedded applications for a robot without depending
on the actual physical machine, thus saving cost and time. These applications can be transferred
onto the real robot without modifications. The use of a robotics simulator for development of a
robotics control program is highly recommended regardless of whether an actual robot is
available or not. The simulator allows for robotics programs to be conveniently written
and debugged off-line with the final version of the program tested on an actual robot. Some
examples of robot Simulators are listed below:

• Webot
• V-REP
• Gazebo etc.

2.1.1 Webot	Robot	Simulator	
Webots is a professional robot simulator widely used for educational purposes. It uses the ODE
(Open Dynamics Engine) for detecting of collisions and simulating rigid body dynamics. The
ODE library allows one to accurately simulate physical properties of objects such as velocity,
inertia and friction. In addition, it is also possible to build new models from scratch. When
designing a robot model, we specify both the graphical and the physical properties of the objects.
The graphical properties:

• shape
• dimensions
• position
• orientation
• colors
• texture of the object

The physical properties:
• mass,
• friction factor as well as the spring and damping constants.

Webots includes a set of sensors and actuators frequently used in robotic experiments,
e.g. proximity sensors, light sensors, touch sensors, GPS, accelerometers, cameras, emitters and
receivers, servo motors (rotational & linear), position and force sensor, LEDs, grippers, gyros
and compass. The robot controller programs can be written in C, C++, Java, Python and
MATLAB. In our project we used C++ language.

Figure	3:	Simulation	of	a	Robotis	DARwIn-OP	in	Webots	

Webot is not just a simulator, it is also possible to transfer a controller and objects previously developed
in the simulation on to the real robot.

2.1.2 Features	

• Fast robot prototyping
• Physics engines for realistic movements using ODE
• Realistic 3d rendering. Standard 3d modeling tools or third party tools can be used to

build the environments.
• Dynamic robot bodies with scripting: C, C++, Perl, Python, Java, URBI, MATLAB
• Can simulate humanoid robots. For example: DARwIn-OP , Nao, , Fujitsu HOAP2,

Kondo KHR-2HV, KHR-3, etc.

	
2.2 Technical	information	
Main Programming Language C++
Formats support WBT, VRML'97
Extensibility Plugins (C++), API
External APIs C++

2.3 The	Robotics	World	
With Webots™, it is easy to create state-of the-art virtual environments for our robot
simulations, using advanced graphics, with lights, shading, texture mapping, shadows, etc.
Moreover, Webots allows us to import 3D models from most modeling software through the
VRML97 standard.

Note: In our project, the hole part was prepared in CAD and transferred to Webot.

Our design robotics world (Fig. 5) consist of:

• Hole

• Red Pin
• Darwin Robot
• Floor

2.4 	Simulation	with	the	control	of	Darwin	Robot	
The aim of this project was to fully integrate the DARwIn-OP in Webots. Webots is a simulator
for mobile robots and DARwInOP is an open source miniature humanoid robot platform.
This integration has been divided in three main steps:

• Creation of a simulation model of the robot.
• Creation of a cross-compilation tool.
• Creation of a remote-control tool.

2.4.1 Simulation	model	
We tested our controller in simulation, without any risk of damaging the robot. We also can run
automatically a lot of different simulations in a very small amount of time (to tune up parameters
for example), which would be impossible to do with the real robot. The simulation model of
DARwIn-OP is design to be as close as possible to the real one. It is equipped with the following
sensors and actuators:
 • 20 servos
• 5 LEDs (including 2 RGB ones)
• A 3 axes accelerometer
• A 3 axes gyroscope
• A camera

Figure	4:	Robot	World Figure	5:	Robot	World	

 	

Figure	6:	Position	of	the	servos.

The following sensors/actuators are not present on the simulation model:
• The three buttons on the back of the robot are not present because they have no interest in the
simulation.
 • The microphones are not present in simulation because sound is not yet supported in Webots.
 • The speakers are not present too because sound is not yet supported in Webots, but this will
certainly be added soon.

2.4.2 Cross-compilation	
A cross-compilation tool has been made in order to allow the use of controllers made in
simulation on the real robot without any need of modifications. When our controller is doing fine
in simulation, we will be able to send and run it on the real robot without changing anything to
our code, just by pressing a button in the robot window.
To perform the Cross-compilation, send your controller to the real robot and make it run on it.
This is done by going to the ‘Transfer tab’ of the robot window and perform followings steps.

§ Set the connections settings:
• IP address

ü Ethernet cable
ü Wifi connection

• Username
• Password

§ Change the Makefile.darwin-op file
§ Complete the “Robot Config” section of the config.ini file

• Time step parameter
• Camera resolution parameter

§ Send a controller to the robot.
§ Install a controller to the robot

	

Figure	7:	Transfer	tab	of	the	robot	window

2.4.3 Remote-control	
	
To debug or understand our controller’s behavior, we will be able to see in real time the state of
all the sensors and actuators on the computer screen. This is available both in simulation and on
the real robot, and here again this is done in just one click. We will also be able to run our
controller on the computer, but instead of sending commands to and reading sensor data from the
simulated robot, it sends commands to and reads sensor data from the real robot.

Remote-control, is much simpler to use than cross-compilation, we do not set the time step in
any files, or to edit any specific makefile, the exact same controller that in simulation can be
used for remote control (without even having to recompile it). Moreover, the remote-control
mode allows us to visualize the state of the sensors and actuators of the real robot in real time.

3 Software	Development		

3.1 Requirements	

As previously discussed, the aim of this project was to get the Darwin-op robot to find a pin,
pick it up and put it through a hole. In order to complete and develop this project extra
specifications needed to be defined. This included assumptions needed and made for this project,
for example the colour of the pin and the size of the hole. The full specification list can be found
below.

3.1.1 	Specs	

• Assume pin is always on the floor (below robot arm level)
• End of the pin should be a distinct colour
• Assume the hole is at arm level
• Hole should be large enough for the Darwin-op robot arm to fit through it
• Pin is within 0.5-meter radius of the robot
• Hole is within 0.5-meter radius of the robot
• 30 min time limit to complete the task (battery length)
• Floor is a block colour i.e. not patterned
• Floor is a different colour from the pin
• Hole has a distinct outline
• Hole is vertical
• Assume ball is the same side of the hole as the robot
• Ball is always red (nothing else can be red)
• Hole always a circle (nothing else can be circular from eye level up)

3.2 Analysis

Once the specifications have been defined it was then possible to move on to the analysis. Here
the key use-cases are defined including their description, preconditions and triggers.

3.2.1 Use	Cases	

Use Case Number 1
Use Case Name Find the red pin
Use Case Description The robot should scan its head up and down (eye

level and below) while turning in an
anticlockwise direction looking for the pin.

Use Case Preconditions N/A
Use Case Trigger Play Button is pressed

Use Case Number 2
Use Case Name Walk to the red pin
Use Case Description The robot should use a mixture of dynamics,

control and trajectory planning to walk towards
the pin. When walking towards the pin the robot
should aim slightly to one side of the pin in in
order to be positioned correctly to pick the pin
up with the robots hand.

Use Case Preconditions ‘Find the red pin’
Use Case Trigger Once the pin has been found

Use Case Number 3
Use Case Name Pick up / touch the pin
Use Case Description The Robot must use kinematics in order to touch

the pin. The robot needs to squat down and
straighten its arm.

Use Case Preconditions ‘Walk to the red pin’
Use Case Trigger Once the robot is next to the pin

Use Case Number 4
Use Case Name Find the circular hole
Use Case Description As before, the robot should scan its head up and

down (this time it should be eye level and above)
while turning in a anticlockwise direction
looking for the hole.

It is proposed to use circle detection to find the
hole. While colour detection could be used it is
hoped the circle detection would make the hole
finding more distinct.

Use Case Preconditions ‘Touch the pin’
Use Case Trigger After the pin has been touched

Use Case Number 5
Use Case Name Walk to the hole
Use Case Description The robot should use a mixture of dynamics,

control and trajectory planning to walk towards
the hole. When walking towards the hole the
robot should aim for the centre of the hole.

Use Case Preconditions ‘Find the circular hole’
Use Case Trigger One the hole has been found

Use Case Number 6
Use Case Name Put the pin through the hole
Use Case Description The robot should straighten one or both of its

arms and put the arm holding the pin through the
hole.

Use Case Preconditions ‘Walk to the hole’
Use Case Trigger Once the Robot is at the hole

Use Case Number 7
Use Case Name Check if fallen
Use Case Description If the robot falls over on its front or its back it

must recognise this and push itself back up to
standing.

Use Case Preconditions
Use Case Trigger If the robot has fallen over

3.3 Design	

Once the use cases were stated it was then possible to start designing the system. As previously
mentioned the C++ program language was chosen as Webots supports this language and it allows
for object orientated program to be used. The code was written in an object orientated design in
order to provide modularity and reusability. It also allows for encapsulation allowing classes to
hide and protect certain values.

Two main classes were defined; the robot class and the target class. Both the pin and the hole
extend the Target class. Additional target items can be added, allowing the robot to find, walk

and interact with different targets in different manners. Details of these classes can be seen below
in the class diagram.

3.3.1 Case	Diagram	

3.4 Implementation		

As can be seen from the class diagram the software was split up into 5 different classes. The
controller run method is shown below. The controller constructor method first creates an instance
of the robot, pin and hole classes. The controller run method then calls each of the use-cases in
turn. A call to the setup is done after finishing with the first item in order to make sure the
Darwin-op is back to its walking state. Use case 7, ‘Check if fallen’, is called during each update
to the timestep in order to make sure it is always checking that the Darwin is still up right.

void PinInHoleController::run()
{
 robot->findTarget(pin); // use case 1
 robot->walkToTarget(pin); // use case 2
 pin->interactWithTarget(); // use case 3

 robot->setup();

 robot->findTarget(hole); // use case 4
 robot->walkToTarget(hole); // use case 5
 hole->interactWithTarget(); // use case 6
}

Once all use cases are completed the destructor is called on each of the object in order to avoid
any memory leaks.

As can be seen from the code above there are 3 main methods:

• findTarget
• walkToTarget
• interactWithTarget

Each of these methods have slight variations depending on what target the function is dealing
with. A description of each of these methods and how they vary are explained below.

3.4.1 findTarget	

When searching for the target the robot moves in a counter clockwise rotation while moving its
head up and down. The range of head movement is limited depending on the target. Once the
object is found the checkIfFound() method returns true and the robot can start walking towards
the target.

3.4.1.1 Pin	

The pin is found by using one of Darwin’s pre defined methods in its vision manager. The vision
manager is constructed with a specific colour hue, in this case red. The ‘getBallCenter’ method is
then called on this manager. This method returns the x and y axis of where the center of the red
object was found in the camera image.

3.4.1.2 Hole	

While the same method for the pin could have been used for the hole it was decided to use the
openCV circle detection method instead. The camera image first needs to be filtered before the
circle detection is applied. By converting the image to grey scale and blurring the image it allows
the circle detection to be more accurate and makes it easier to detect. Once the circle is detected
(Fig. 1 , small adjustments are needed to the x and y axis values in order to keep the circle
focused in the robot’s vision.

Figure 8: Circle detection applied on image

3.4.2 walkToTarget	

Once the target has been found the robot starts to walk towards it given the specified x and y axis
values. After each step the new relative x and y axis coordinates are then calculated and the step
it repeated until the robot reaches the object. The stop is different depending on the target object.

3.4.2.1 Pin	

As the robot moves closer to the pin it has to look further down towards the ground which in turn
changes the y axis value. From this it is possible to gauge how far the robot is from the pin and
stop when appropriate

3.4.2.2 Hole	

Knowing when to stop at the hole is a bit more of a challenge. The robot moves towards the
circle until it can no longer detect a circle (this is hopefully because the robot is too close to the
hole). At this point it walks a set number of steps to get closer to the hole.

3.4.3 interactWithTarget	

Different targets require different forms of interaction. When the robot arrives at the pin it should
pick it up or touch it, however when the robot arrives at the hole it should put its arm through it.

3.4.3.1 Pin	

Assuming that the robot has reached its target, the robot can then touch the target. This involves a
combination of straightening out its arm to the side and bending its leg (Fig. 2).

Figure 9: Darwin-op robot touching the 'pin'

3.4.3.2 Hole	

Assuming the robot has reached its target the robot can then straighten out its arm in order to put
its arm thought the target (Fig. 3). In this case both arms are straightened as there is no control
where the robot is relative to its target.

Figure 10: Darwin-op places its arm through the hole

3.5 Challenges	

While writing this software there were a number of challenges and constraints. As can be seen,
the arm that Darwin currently has does not allow for objects to be picked up. This was due to
being unable to control the custom made gripper within Webots. As a results, when simulating
this task, the robot touched the pin instead of picking it up.

 Another issue was found when trying to get the Darwin to walk towards the hole. As explained,
gray scale was needed in order to blur the image and get circle detection. However, when trying
to do this directly in the CircularHole class the controller would crash. As a get around, the
image was changed to gray scale in the robot class and then passed across. A number of issues
were also found with finding and walking to the hole. The circle detection isn’t that robust.
Minor changes to both the x and y axis had to be made in order to keep the circle in the robot’s

sight. Additionally, if the robot was at an angle to the hole, the hole would not be detected as it
was viewed as an ellipse rather than a circle.

Another the main issues with the hole was knowing when the robot had reached the hole. As
expected, as the robot got closer to the hole, the circle appeared bigger. Eventually, the circle
became too large to fit in the camera so the robot was no longer able to detect it. Seeing as the
Darwin-op does not have any distance sensors, at this point the robot is hardcoded to walk a set
number of steps until it reaches the hole.

3.6 Further	Work	

While the project managed to achieve a number of its goals there are a number of improvements
that could be implemented in future work.

As discussed, we were unable control the custom gripper within Webots. If this was possible
then the methods in the redPin class would need to change from touching the pin to picking up
the pin.

Another main issue was detecting and know when to stop at the hole. OpenCV circle detection
was used but there may be other alternatives that allow the robot to navigate to the hole better.
Currently the robot putting its hand through the hole is not stable as it is chance as to whether the
robot put its left hand, right and or no hand through the hole i.e. straightens its hands either side
of the hole. Ideally the robot should put the same hand that picked up the ball through the hole in
order to put the ball through the hole. As the code is modular it is possible to improve the code
for the Hole without effecting the robot finding the pin.

One last improvement would be to update the pin class in order to make the changing of the pin
easier. By changing the vision manager values it should be possible to enter any colour of pin for
the robot to find.

4 Design		

The purpose of this chapter is to tackle the issue of designing a new gripper, or at least, a part that
would sustain a gripper which could then be used for the objective at hand. Here will address our
choices for software, the assumptions that were made in our design decisions, the process through
which we designed and manufactured the part and the final result itself.

4.1 CAD	Software	
Of the many choices available to us for designing a 3D model, our decision fell on Solidworks for
3 main reasons:

• Productivity
o Intuitive 3D design, with a focus on innovation.
o Built-in intelligence that creates a user friendly environment and accelerates the design

process.
o Free Student Licence.

• Power

o Creates 2D drawings faster and almost automatically, ready for workshop prototyping.
o Speedy design ensures accuracy with focused industry tools and terminology.
o Built-in Finite Element Analysis allows for real world simulation.
o Allows not only for part design, but also environment creation.

• Community

o Due to its widespread applications, there is an active and still growing user community to
which we could connect, share, and discuss any issue.

o New talent is being drawn to this tool, which ramps up its usage and innovation techniques
used for 3D design.

o An accessible network of resources, people and ideas.

Even though all the above provided quite a few reasons for us to choose this platform, let us bear
in mind that one of the most important issues would be the ease to go from design to the workshop,
which, due to its in-built 2D drawing engine, Solidworks is able to tackle.

Such importance derives from the fact that the prototyping process, as we were able to experience
in the course of this project, is often iterative, since small adjustments are always needed to bridge
the reality gap between design and the actual final part.

In next sections we show how we built the new part as well as the gripper we used and how this
could be connected to the existing darwing-OP model. We will present, not only the deigned part
in 3D, but also its drawing and the result we obtained.

4.2 Process		

This section focus on the various steps of our design process which can be further divided into 3
different categories:

• Measurements: Here, we focused on getting acquainted with the existing model of the Darwin-OP
itself and the purpose of this step is to gather accurate measures of those parts where Darwing and
our designed part will connect.

• 3D/2D Modelling: Here we explore how can a new part be built, and which shape must it take so
that it works as intend both in respect to the connection to Darwin as well as the connection to the
gripper.

• Manufacturing: This point aims to give an overview of our choices for manufacture the part we
needed and the challenges we have faced, both technical and not in order to do so.

4.2.1 Measurements		

Getting the correct measurements for building a new part is a crucial step in any design project.
At this stage we focused on, not only getting acquainted with the more generic dimensions of the

Darwin-OP shown in Figure 11, but also its specific structure shown in Figure 12.

Looking closely at the second Figure 12 we realized that due its inherent open-source structure,
the part we would have to replace would be number 12 (the Hand) and that the part our design
should connect to would one of the various “Angled Actuator Brakets” listed as number 10.

Figure 13 shows some early sketches of the part we aimed to design.

Figure	122:	Components

Figure	11:	External	Measures

	
Figure	13:	Early	Sketch	

4.2.2 3D/2D	Modelling	
Stepping from the sketching phase into the 3D modelling we started by building the part which
would replace the original hand and hold the gripper. We also built the gripper in the 3D model so
that we could create an assembly which aimed at mitigating any mistake in our measurements thus
facilitating the next phase of our project.

Below we show two figures of the final assembly, one with all the parts together and an exploded
view of the same showing the different parts that constitute this model.

Note that the part in question is that of a brownish colour, whereas the black parts represent the
gripper we were provided with and the grey part represents the “Angled Actuator Braket”
mentioned above.

Let us note how we opted for a simple design, yet one that would fulfil all the specifications needed
i.e.:

• Full connectivity to Darwin’s main structure, through threaded holes (M1)
• Full connectivity to the provided Gripper, also through threaded holes (M3)

Figure	15:	Assembly Figure	145:	Exploded	View

• A shape that allows for cable passing, necessary for driving the actuator itself.
• Structural integrity.

At this stage, getting the part ready for the workshop implies providing the 2D drawing. Figure 16
shows the exact dimensions and shape of the part we designed.

4.2.3 Manufacturing		
As mentioned above, one of the key features to take into account when designing a mechanical
part is structural integrity. Nevertheless, as in our case, we aim to build a prototype that would
demonstrate a proof-of-concept work (and not a fully marketable product) we decided to make use
of the most common materials and manufacturing techniques, without compromising the goal of
our project. For that reason, this part was built using a 2mm thick aluminium plate, with thread
holes (M1 and M3) where the “L” shape was achieved by bending a strait plate. Figure 17 shows
the intended result.

Figure	16:	Exact	Dimensions

Figure	17:	Manufactured	Part

5 Electronics	–	Custom	Intelligent	Servo	

When designing a robotic gripper for Darwin, the first idea was to use the same motor as Darwin
already uses for its motions since Darwin already provides control and power over this type of
motors. Darwin uses so called “intelligent servos” which are explained in the next section.

5.1 Introduction	to	Intelligent	Servos	(referred	as	IS)		
5.1.1 Definition	
Intelligent Servos are a new breed of servos used in high precision applications. This include
applications that require exact positioning through Kinematics. An example application is a
human like robot balancing on one lag which is a multi-disciplinary challenge. Nearly all current
robots are using such “intelligent servos”, some with modifications that make them proprietary.

5.1.2 MCU	Inside	
The first question to ask is what’s inside an Intelligent Servo that differs it from a usual servo.
The “intelligent” of the servo already reveals the most important part, the intelligent servo has a
brain / micro controller (MCU) that provides the communication and feedback of the position
measurement. The measurement itself is carried out by an encoder.

5.1.2.1 The	case	of	“Dynamixel	MX-28”	
As described in the previous section, IS’s are characterized by its MCU. The MX-28 uses an
ARM CORTEX M3 based MCU for the processing. The precise measurement is provided by a
magnetic encoder which also stands for high durability of the measurement device (is often
identified as a source of errors).

5.1.3 Communication	
How do Intelligent Servos communicate? Hence the IS has its own microcontroller this demands
for a communication using a protocol. Cheaper servos are usually driven directly using PWM.
The intelligent servos are typically using either RS485 or RS232 as interface. Since there is no
standard, the communication itself strongly depends on the implementation of the manufacturer.
In the case of Darwin and specifically the “Dynamixel MX-28” a proprietary protocol is used. It
has similarities to a token-ring communication with a closed loop. A typical communication
process is demonstrated in the picture below:

Figure	18:	TODO

	

	
	
	
5.1.4 Key	Features		
	
The key features of the Dynamixel MX-28 Intelligent Servo Summarized:

MCU: ARM Cortex M3 manufactured by SI (72
MHz)

Encoder: 12-bit magnetic encoder
Running Degree: 0-360° or continuous
Motor: Maxon RE-max Metal Brush (PN:214897)
Link: TTL

Having all that said it’s no wonder that the costs of an intelligent servo is usually 10 times higher
than the cost of an ordinary PWM controlled servo. In the case of Darwin’s Dynamixel MX-28
Servo it exceeds the available budget. Therefore, a different solution needs to be invented /
investigated. Since a servo requires power and some sort of control the Idea was to create our
own Intelligent Servo which is described in the next section.

5.2 Custom	Intelligent	Servo	
Our approach to an intelligent servo was to rebuild the environment of an intelligent servo as
“adapter” to a cheap PWM stepper motor.

5.2.1 Requirement	Analysis	
Since all servos are connected in serial, the power and communication is provided by the
antecedent servo. The communication of the MX-28 is using TTL serial hence our servo should
be able to communicate using this protocol. Resulting an MCU/IC is a mandatory part. The
required power for both the MCU and the Stepper Motor is provided by the previous servo.

Figure	19:	TODO	

Figure	20:	TODO

Unfortunately, the provided power is at 12 Volt and a stall current of 1.4 Ampere. Since our
stepper motor is working best between 5-6 Volts an AC-AC Voltage Regulator is required. In
addition to that an MCU typically runs at 3-5 Volt which would require an additional Voltage
Regulator just for the MCU.

5.2.2 Intelligent	Servo	-	Our	Approach	

	
Figure	21:	TODO

In our approach we used a Linear Voltage Regulator to “step down” to 5 Volt for the Servo. The
used MCU in this case requires a 3 Volt input, hence we “step down” using regular resistors. The
MCU itself is similar to the MX-28, ARM Cortex M3 based. For an easy access and
programming interface to the MCU and FT232RL IC is used. This enables us to directly
interface the MCU using USB. The diodes and capacitors are for the protection and are –
theoretically – already implemented in the Voltage Regulator and in the Servo. Since we want to
make sure that Darwin can’t be damaged and its “best practice” we have added them additionally
to our Circuit.

5.2.3 Critical	Evaluation	of	the	Custom	Intelligent	Servo	Approach	
What would we make different now? The first thing that was brought to our attention is the
inefficiency of linear voltage regulators. These should be replaced by so called switching voltage
regulators that emit less heat and are more efficient. In addition, the used Voltage Divider (the
resistors) should be replaced by another Voltage regulator IC. This would save additional power
which is a very important factor for a battery driven robot. If more time and budget would have
been available, the stepper motor should have been replaced by a professional motor similar to
the one used by Darwin.

5.2.4 Learning	Outcome	
This approach helped a lot in understanding of modern servo technology and why its currently
on the rise. Especially in high precision applications where a lot of Kinematics is involved these
servos are frequently used. In addition to that we learned about the Electronics required to drive
these intelligent Servos. Furthermore, we now understand better what happens inside a humanoid
robot like Darwin and why they are so expensive.

5.2.5 Reality	
After understanding how intelligent servos work and completing our own design we realized that
the “nice” approach is not realizable in-time anymore. Resulting we had to create a simplified
version of the above concept. This simplified version is explained in the next section.

6 Simplified	Intelligent	Servo	
6.1 Selected	Servo		
The motor which was given to us was Servo motor HS-422 Standard made by Hitech. It is very
simple and cheap.

 	
Figure	22:	TODO	

Some of its features are

Parameters Description
Control System +Pulse Width Control 1500usec Neutral
Operating Voltage 4.8-6.0 Volts
Torque 45.82/56.93 oz-in. (4.8/6.0V)
Direction Clockwise/ Pulse Traveling 1500-1900usec
Current Drain (4.8V) 8mA/idle and 150mA no load operating
Current Drain (6.0V 8.8mA/idle and 180mA no load operating
Motor Type 3 Pole Ferrite

6.1.1 Design	of	Power	Supply	
Operating voltage of servo is 4.8-6 V and Arduino board is also around 5- 12V . But voltage
coming from Darwin is a 12V . So need arises to step down voltage . Voltage regulators circuits
is used to step down voltage from 12 to 5v.
The circuits which can be used for step down voltages are

• Linear voltage regulators circuits

• Switching voltage regulator circuit

Linear voltage regulators circuit was used in our project since Switching circuits were not
available in university. But Switching voltage regulator circuit are more suitable for our project
since they are more efficient than linear voltage regulators circuits.

6.1.2 Linear	voltage	regulator	design	

	
Figure	23:	TODO	

	

Input is 12 v and output is 5v which is given to servo and Arduino. Filters circuits(capacitors)
and diodes are used to protect Darwin motors from receiving any backward current from the
circuits.

6.1.3 Servo	Movement	
The servo is controlled using PWM Technique. The term pulse width modulation refers to the
technique of varying a signal’s pulse width to control a device such as a servo. Used in many
applications apart from this such as Lamp dimmers, motor speed control, power supplies, noise
making due to efficiency and simplicity of PWM signal as well as flexibility of pulse modulated
waveform. The clock cycle, duty cycle, amplitude are some of basic parameters of PWM. Shown
above is the simple PWM signal.

	
Figure	24:	TODO

a)
The first parameter which is a clock cycle is the frequency of signal measured in hertz and easy
to understand. The servo’s control signal is a 50 Hz pulse train.

b)
The other parameter which is a duty cycle involves switching of a signal. It is explained with
waveform as shown above

All three signals shown above are square wave oscillations modulated as per their oscillation
width, so called duty cycle and have same frequency. The parameter which is changed many
times during program execution is the duty cycle. The frequency remains same but signals differ
in pulse width. Duty cycle controls amount of power supplied to external components.

6.1.4 Servo	Rotation	Principle	

The shaft of servo is rotated by passing a PWM signal on a yellow wire as shown in fig above.
The servo maintains the angular position of the shaft as long as signal exists on its input line and
position of shaft changes, if signal given to control(yellow) wire changes.

	
Figure	25:	TODO

A control wire communicates the desired angular movement. The control signal’s pulse width
determines the shaft’s angle of rotation. The minimal width and the maximum width of pulse that
will command the servo to turn to a valid position are functions of each servo. Even different
servos of the same or different brand, will have different maximum and minimums.
In our servo, the pulse width ranges from about 0.6ms to about 2.4 ms as seen in fig[a] and can
be interpreted as follows:

• Pulse width of 1.5 ms will give 0° rotation.

• Pulse width of less than 1.5 ms will give counter clockwise rotation up to 90°.

• Pulse width of greater than 1.5 ms will give clockwise rotation up to 90°.

Depending upon signal received by servo from Arduino platform, the servo rotates in desired
directions.

6.1.5 Generation	of	pwm	using	Arduino	platform	
We can generate PWM in Arduino platform using PWM inbuilt technique or manual method.

We used manual method since the built in PWM frequency did not matched the servos expected
pulse timing.

In Manual method, PWM is generated in Arduino platform by writing code as follows

7 Conclusion	and	discussion		
In the course of this project we have faced many constraints and challenges that incur from
undertaking a project with such a practical approach and objective. These can be divided into 5
different, yet related, categories, namely:

• Set a fixed set of specs from the beginning – The fact that we were given total freedom on how
to work out the problem and tackle its many facets, came as the first big challenge we faced as
group. This implied going over the problem in an iterative manner, constantly reassessing our
assumptions as we learned more about the Darwin-OP, its functionalities and electro-mechanical
structures. At this point the concise and concrete definition of the problem was made by writing a
list of specifications we aimed to achieve during the course of this project.

• Project plan should have been in place – A direct consequence of the above, resulted in the fact
that also our assumptions, for how much time a certain task would take, were often, inaccurate.
Despite the fact our knowledge of the platform increased with each passing week, our starting point
was from total inexperience, which we were able to gradually overcome more efficiently as a result
of both trial and error and research and by keeping a methodical approach. Nevertheless, the natural
initial misjudgments of time consumption were a critical point for this (and most) project(s).

• Tasks could have been split up with more defined roles – Naturally, as in any project, our
knowledge of the problem increased with the passing of time we dedicated to it. In retrospective
this caused us to divide tasks amongst ourselves not always in the most efficient manner. Once

#include	<Servo.h>	
Servo	myservo;																																					//	create	servo	object	to	control	a	servo		
intpos	=	0;																																														//	variable	to	store	the	servo	position	
	
void	setup()		
{		
myservo.attach(9);																													//	attaches	the	servo	on	pin	9	to	the	servo	object		
}		
void	loop()		
{		
myservo.attach(9);	
	
for(pos	=	0;	pos<	180;	pos	+=	1)													//	goes	from	0	degrees	to	180	degrees		
		{																																																																									
myservo.write(pos);																													
delay(15);																																													//	waits	15ms	for	the	servo	to	reach	the	position		
		}		
	
for(pos	=	180;	pos>=1;	pos-=1)											//	goes	from	180	degrees	to	0	degrees		
		{																																	
myservo.write(pos);																											//	tell	servo	to	go	to	position	in	variable	'pos'		
delay(15);																																																							
		}		
	
myservo.detach();													//Detach	the	servo	if	you	are	not	controling	it	for	a	while	
delay(2000);	
}		

	
Figure	26:	Standard	Servo	Rotation	to	Exact	Angel	code

more, as our familiarity with Darwin-OP improved so did our judgment on how tasks could be split
and so our effectiveness also increased.

• Design the world in detail before writing the controller – As mentioned, many of these issues
are very entwined and dependent of each other. Building the simulated environment and coding the
controller are naturally no exception. Even though at first we assumed that there was some
independence between the two, and so we could (for example) start coding the methods that would
make the Darwin move towards a generic target or grab an object, at a later stage we were
confronted with the fact that our generic assumptions, regarding the environment, had to be further
developed so we could progress with code implementation. This also falls under the previous point
where we mentioned that division of tasks in an effective manner was highly dependent on our
knowledge of the problem itself and all the hardware and software capabilities.

• Hardware should have been designed earlier in order to have time for modifications and
testing – This is the bullet point which is definitely more concerned with the execution of ad hoc
mechanical parts and electrical components needed for this project. Availability of resources, either
they are materials, workshop schedules or defective components are a constant in any real-life
project. In this particular case, and once more, as our understanding of the task deepened, we may
say that, in retrospective, we could have started building the extra components earlier.
Nevertheless, we felt that as a group it would be most advantageous for everyone if each member
was comfortable in discussing any part of the project, and for that reason we purposefully focused
on learning from each other’s expertise.

To sum up, we believe we came quite close to our initial goal which was having the real Darwin
grasp a pin and insert it into a hole, namely for the following reasons:

• We have showed we were able to use form and colour detection.
• We have showed we could command Darwin’s movements precisely, given the task.
• We have been able to build a mechanical component which supports a different gripper and

connects to Darwin’s main structure
• We’ve shown we could use Darwin’s power supply and communication protocol to actuate a

separate gripper.

Despite the fact the final step is, obviously, still to overcome, we are confident that with this project
we have set a solid foundation in terms of both simulation and electro-mechanical design so that
future students can continue our work without the need to tackle the most low-level challenges.

8 References	
	
Ha, I., Tamura, Y. and Asama, H. (2013). Development of open platform humanoid robot
DARwIn-OP. Advanced Robotics, 27(3), pp.223-232.

Williams, K. (2004). Build your own humanoid robot. New York: McGraw-Hill.

Cyberbotics Ltd. Webots: robot simulator – overwiew [cited 2011 June 19]. Available from:
http://www.cyberbotics.com/overview

Kazuhito Yokoi, Fumio Kanehiro, Kenji Kaneko, Shuuji Kajita, Kiyoshi Fujiwara and Hirohisa
Hirukawa. The International Journal of Robotics Research 2004; 23; 351. Experimental Study of
Humanoid Robot HRP-1S

Serena Ivaldi , Jan Peters , Vincent Padois and Francesco Nori : Tools for simulating humanoid
robot dynamics: a survey based on user feedback Available from: http://www.ausy.tu-
darmstadt.de/uploads/Site/EditPublication/ivaldi2014simulators.pdf

9 Individual	Contributions	

Hugo: I took the necessary measures to build the new gripper support as well as developed the CAD
model and scheduling the manufacturing of it in the workshop.

Markus

Samir : I completed integration of simulation between Darwin and Webot ,also developed world part of
project.

Waqar

Roshenac: I designed, programmed and commented the simulator code in order to make the Darwin walk
towards the ball, touch it, find the hole and put its hand trough the hole. I also wrote the chapter on
software development and put all the different parts of the report together.

Shakh- Izat: I gathered information about Darwin-Op and its specifications. Also I designed presentation.

