
Simulation of a Quantum Computer

Roshenac Mitchell Max Nolte Martin Rüfenacht Mark Stringer
Justs Zariņs̆

March 29, 2012

Abstract

A simulation of a quantum computer was implemented on a classical computer using the

Java programming language. All basic components of a quantum computer were created

and the Deutsch-Jozsa algorithm, Grover’s quantum search algorithm and Shor’s integer

factorisation algorithm were implemented and successfully run. Shor’s algorithm was used

to factor 15 and 21 into their primes using a personal computer.

Junior Honours Computational Physics Project

School of Physics and Astronomy, University of Edinburgh

Contents

1 Introduction 1

2 Theory 1

2.1 Basics of Quantum Computation . 1

2.2 Algorithms . 4

2.2.1 Deutsch-Jozsa Algorithm . 4

2.2.2 Grover’s Algorithm . 5

2.2.3 Shor’s Algorithm . 8

3 Implementation 11

3.1 Design . 11

3.2 Core . 13

3.3 Operators . 13

3.4 Algorithms . 14

3.4.1 Deutsch-Jozsa Algorithm . 14

3.4.2 Grover’s Algorithm . 15

3.4.3 Shor’s Algorithm . 16

4 Discussion 17

5 Conclusion 18

1 Introduction

A classical computer that runs on electrical signals going around circuits has matured significantly

since its inception and now forms the backbone of society. However, society has grown as well,

along with its needs for more and more computing power. Transistors become smaller and armies

of cores work in parallel to keep up with current demands. This trend can still continue for a

while and it should work, but perhaps some lateral thinking is needed for the next step. That

new idea could be a whole different approach: a quantum computer.

At the start of the 1980’s Richard Feynman introduced his idea of a universal quantum com-

puter. He realized that a quantum-mechanical system cannot really be simulated by a classical

computer, only with an exponential slowdown. This would mean that a quantum computer can

simulate a quantum mechanical system far more efficiently than a classical computer [1].

As the years went by, a number of algorithms suitable for a quantum computing machine were

created. In 1992 Deutsch and Jozsa discovered one of the first algorithms that run exponentially

faster than the classical version. Two years later in 1994 Shor’s quantum algorithm for factoring

numbers was born. Afterwards Grover found an unsorted database search algorithm. All these

showed an exponential speed increase over their classical equivalents, so clearly there is some

merit to this idea.

The goal of this project was to explore the theoretical framework of quantum computing. This

was achieved by programming a simulation of a quantum computer in Java. After all, you can

only be sure that you understand something if you can teach it to a computer. The project code

contains basic mathematical tools and a universal set of gates plus some more for convenience;

these are used to construct a circuit for Grover’s, Shor’s and Deutsh-Jozsa algorithms as a proof

of concept.

This report covers the theory, principles of quantum computing and the building blocks of

the algorithms. This is followed by an explanation of the overall design and implementation

details of the core components, operators and algorithms. We further discuss the main results

of the project, including successes and points of potential improvement.

2 Theory

2.1 Basics of Quantum Computation

In a quantum computer information is stored in so-called qubits (quantum bits), an analogy to

classical bits. A qubit is a microscopic two-state quantum mechanical system, for example an

electron with spin up or spin down or a photon with two perpendicular polarization states. These

two states represent the computational basis {|0〉 , |1〉}. So instead of either representing 0 or 1

like a classical bit, a qubit can be in both states simultaneously (a superposition of two states),

for example |ψ〉 = α |0〉+ β |1〉. The wave functions are normalized: |α|2 + |β|2 = 1

Multiple qubits form a Quantum Register. Quantum registers can store several numbers at

1

the same time, i.e. the system can be in all classical states at once. A quantum register consisting

of n qubits thus has 2n possible states. A quantum register of size four could be in state |0110〉
but also in all other 24 = 16 states {|0000〉 , |0001〉 ... |1110〉 , |1111〉} at the same time.

The most general state for a n qubit quantum register is thus

∑
x∈{0,1}n

αx |x〉 (1)

Manipulations on qubits are done by unitary operations, these can be performed by quantum

logic gates. All quantum gates are reversible, in contrast to classical computers. Several quantum

logic gates form a quantum network.

The gates can be represented by 2n by 2n matrices (where n is the size of the quantum

register) which act on the computational basis.

The computational basis of a two-qubit quantum register would be |00〉 , |01〉 , |10〉 , |11〉}. So

a gate acting on a register in state |00〉 would be equivalent to multiplying the matrix by the

vector

|00〉 = {|0〉 ⊗ |0〉 =

(
1

0

)
⊗

(
1

0

)
=


1

0

0

0

 (2)

There are many equivalent ways to write multiple-qubit states |x〉 where x ∈ {0, 1}n. For

example

|x〉 = |3〉 = |011〉 = |0〉 ⊗ |1〉 ⊗ |1〉 (3)

One of the fundamental gates is the Hadamard gate. It is a unitary gate acting on one qubit

and can be represented by the two-by-two matrix

H =
1√
2

(
1 1

1 −1

)
(4)

acting on the computational basis {|0〉 , |1〉} of the qubit.

Figure 1: Graphical representation of the Hadamard gate

Another fundamental gate is the phase shift gate:

φ =

(
1 0

0 eıφ

)
(5)

2

A combination of the Hadamard and phase gate can construct any unitary operation on a

single qubit.

The phase shift gate is used in the Quantum Fourier Transform (QFT), a discrete Fourier

transform applied to a quantum register. One of its uses is in Shor’s algorithm, to put a quantum

register in the superposition of all its states.

Thus for a quantum computer consisting of a single qubit the Hadamard and phase gate

would be a universal set of operators, but a single qubit computer would not be of much use as

the power of quantum computing lies in the entanglement of the qubits. This entanglement is

done by multi-qubit gates consisting of control and target qubits. The simplest two-qubit gate is

the controlled NOT gate (or C-NOT). The C-NOT gate is the reversible version of the classical

(irreversible) XOR gate. It is made reversible by keeping the value of the control qubit. It is

represented by the matrix

C =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (6)

acting on the computational basis {|00〉 , |01〉 , |10〉 , |11〉}.
Another important two qubit gate is the controlled-V gate. Any unitary transformation acting

on any number of qubits can be constructed by a network of only Hadamard and controlled-V

gates. The controlled-V gate is represented by the matrix

V =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

 (7)

The C-NOT gate and the C-V gate are both of the form controlled U. A control qubit is left

unchanged, and a target qubit will be changed if the control qubit is in state |1〉.

Figure 2: Graphical representation of the controlled U gate

Another important gate for our simulation is the swap gate. It is a two-qubit gate that swaps

two adjacent qubits and is represented by the matrix

3

S =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (8)

The swap matrix can be used to swap qubits in a quantum register making control and target

qubits adjacent. This helps when applying multiple-qubit gates like the C-NOT gate on non-

adjacent qubits. The qubits can be swapped several times until they are adjacent. Then the

C-NOT can be applied and afterwards they get swapped back to their original position. [10, 4]

2.2 Algorithms

2.2.1 Deutsch-Jozsa Algorithm

The Deutsch algorithm was originally set up for one qubit by Deutsch in 1985 and then gener-

alized for any number of qubits by Deutsch and Jozsa in 1992 [2]. The algorithm has since been

improved by R. Cleve et al., which is the version that is discussed here and implemented in the

simulation [3].

The Deutsch-Jozsa algorithm determines whether a function f : {0, 1}n → {0, 1} inside a

quantum computer oracle (Uf) is balanced or constant. If the function is constant, it will return

either 0 or 1 for all possible inputs {0, 1}n. If the function is balanced, it will return 0 for exactly

2n−1 combinations of {0, 1}n and 1 for the other 2n−1 combinations. The function is promised to

be either constant or balanced and nothing else about it is known, it thus serves as a black-box.

The internal structure of the function is irrelevant as long as it is either constant or balanced

[3, 4].

In the worst case, a classical computer would have to evaluate 2n−1 + 1 combinations of

{0, 1}n to get a deterministic answer (less for an answer with some uncertainty). The quantum

algorithm however only needs a single evaluation to distinguish whether the function is constant

or balanced and thus is exponentially faster than a classical computer.

The quantum mechanical function evaluation is implemented as a unitary transformation

acting on the quantum register. There are n input (control) qubits (the input to the function)

and an addition (target) qubit to store the result of the evaluation:

Uf |x, y〉 = |x, y ⊕ f(x)〉 1 where x ∈ {0, 1}n, y ∈ {0, 1}.

Figure 3: Network representation of the oracle.

1The ⊕ symbol denotes the exclusive or operation (XOR)

4

Thus the n control qubits stay unchanged and the additional qubit is used to save the result.

So for example if f(10110) = 1

Uf |101101〉 → |101100〉

Figure 4: Network representation of the Deutsch-Josza algorithm.

To run the algorithm, the register is initialized to the state |x, y〉 = |0, 1〉, so all n control

qubits are in state |0〉 and the target qubit is in state |1〉. A Hadamard gate is then applied to

every single qubit causing the new state to be

1√
2n+1

∑
x∈{0,1}n

|x〉 ⊗ (|0〉 − |1〉) (9)

After applying the Uf gate this transforms to

1√
2n+1

∑
x∈{0,1}n

(−1)f(x) |x〉 ⊗ (|0〉 − |1〉) (10)

Hadamard gates are then applied to the n control qubits, but not to the target qubit, leading

to

1

2n

∑
x,z∈{0,1}n

(−1)f(x)⊕(x·z)|z〉 ⊗ |0〉 − |1〉√
2

(11)

where x · z is the scalar product modulo two. Now the amplitude of the state |z〉 = |0〉 is

∑
x∈{0,1}n

(−1)f(x)

2n
(12)

So if the function is balanced the (−1)f(x) terms will cancel and the amplitude of |0〉 =

|00...00〉 is zero. If the function is constant the terms will add up to ±1. Consequently a

measurement of the n control qubits will yield whether the function in the oracle is constant or

balanced. It is constant if the measurement yields 0 and balanced for any other number[3, 4].

2.2.2 Grover’s Algorithm

Searching a unordered database in a classical computer is of O(2n) complexity, simply iterating

through every item in the database and questioning the oracle; however in 1996 Lov Grover

discovered a method of searching a database in O(
√

2n) complexity. The problem of searching a

5

database is defined by finding the entry with the least amount of computational cost. Grover’s

algorithm is based on the fact that in a quantum computer is it possible to parallelise many

queries to the oracle in a single step. This is very different compared to a classical algorithm

which would require the oracle to be queried once for every item, hence the O(2n) complexity.

Grover went further than just discovering a search algorithm: he proved that it is impossible to

accomplish this task in less time.

Grover’s Algorithm consists for three main stages of the algorithm and results in a quantum

register very likely to be the resulting answer we are looking for. These stages are:

1. Initialisation

2. Grover Iteration

• Oracle (Uw)

• Diffusion Matrix (Us)

3. Measurement

The first stage, initialisation, sets the quantum register that will be acted upon into a complete

superposition of all basis states. This is done by applying a Hadamard operator to each qubit

within the quantum register. The resulting quantum register of this stage is [5]:

|ψ〉 =
1√
(N)

N−1∑
i=0

|i〉 (13)

The second stage of Grover’s Algorithm is the most complex of the three and involves math-

ematics that will not be covered [5], however final results will be given. During this stage an

Oracle functioning in a way such that it can identify the answer (x0) is required. The Oracle is

a black box function which is represented by [5]:

f(x) =

{
1 if x = x0

0 otherwise
(14)

The Oracle is a unitary transform of the quantum register it acts upon. The basis that

represents the answer is phase shifted by π, while the other bases are unchanged. Note that the

phase shift does not have a classical analogue.

After the Oracle, another transform is applied: the Diffusion operator. The Diffusion is

defined to be [5]:

Us = −HI|0〉H (15)

The Diffusion operator is unitary and is equivalent to an inversion about the mean values

of the amplitudes of each state. In effect it increases the amplitude of |x0〉 and decreases the

amplitude of the other bases.

6

By applying both the Oracle and the Diffusion operator a number of times to the resulting

quantum register from the previous stage, the amplitude of the answer base increases. A rep-

resentation of this process is a rotation of the quantum register in a two dimensional complex

space from the initial superposition vector towards the |x0〉 basis. The number of steps required

can be calculated by [5]:

k =
⌊π

4

√
2n
⌋

(16)

During the final stage of the algorithm, the resulting quantum register from the grover iter-

ation is measured, which causes it to collapsed into a specfic basis. This measurement results in

a single base state with a non-zero amplitude and all other states with zero amplitudes, hence

measuring again will always result in the same measurement. The probability that the answer

state is obtained by the measurement is [5]:

Prob(|x0〉) ≥ 1− 1

N
(17)

To test whether the correct result was retrieved the oracle can be queried to recognise the

measurement, if it does not recognize it as the answer the algorithm is restarted from the begin-

ning.

Below is a graphical representation of the change of probabilities during the application of

Grover’s Algorithm.

If we assume the required answer (marked state) is 4 with 8 different possible states.

Figure 5: The QRegister is initially in the first state with all amplitudes being equal to 1.[6]

Figure 6: A Hadamard gate is then applied which puts the QRegister into an equal superposition
of all possible states.[6]

7

Figure 7: When the Oracle is applied it goes through selective phase inversion. This switches
the sign of the amplitude of the marked state.[6]

Figure 8: The Diffusion matrix then performs an inversion about average operation. This in-
creases the amplitude of the state inverted in the previous step.[6]

2.2.3 Shor’s Algorithm

In the previous sections we have looked at two algorithms, Deutsch-Josza and Grover’s: these

have no real applications. In this section Shor’s algorithm will be examined and its applications

considered.

Shor’s algorithm factors a number into its primes. It works for all odd composite numbers

noting that an even number always has 2 as a prime factor, so can be continually divided by 2

until it is odd. Then Shor’s algorithm can be applied to find some other factors. This means

any number can be factored into its primes.

On a classical computer factoring prime numbers is currently very slow. With the best

classical algorithms available one can currently factor a number into its primes in sub-exponential

time2. Shor’s algorithm uses the fact that a quantum register can be in a superposition of various

states. So a gate acting on the quantum register will essentially calculate a superposition of states

corresponding to the superposition of states put into the gate and the particular function of the

gate. Furthermore it is easy for one to put a quantum register into a superposition of all its

2This means the algorithm still slows down faster than a polynomial rate but is significantly faster than an
exponentially growing algorithm

8

possible states by applying the quantum Fourier transform to a quantum register in the state

|0〉.
Currently a lot of security, namely RSA encryption relies on the fact that it is hard to factor

a number into its prime factors, using a classical computer. It is used everywhere in modern

cryptography, as part of a key exchange and authentication protocols, which in turn is used

everywhere in network security. One can imagine it would be disastrous if there was an easy way

to compromise this security with many internet services relying on it, such as online banking

and commerce. So far it has only been possible to factor up to 15 [8, 7], so RSA is very unlikely

to be compromised due to Shor’s algorithm currently.

Factoring a number N, into its primes can be accomplished by choosing a random number

that is relatively prime to N and then finding P (the period of the function) such that P satisfies:

mP = 1 mod N (18)

Where m is a randomly generated positive integer.

After generating a value of m one should construct two quantum registers, the first with L

qubits where L is determined from the expression

N2 = Q = 2L = 2N2 (19)

This will store the values of the arguments of the function

x→ mx mod N (20)

The second quantum register will have log2N qubits. It will store the values of the function

for the corresponding arguments in the first quantum register. Initially the quantum registers

should be set such that the first one is in state |0000 . . . 00〉 and the second one in the state

|0000 . . . 01〉, or in states |0〉 and |1〉 in decimal notation.

Now applying the Quantum Fourier transform to the first register it becomes a superposition

of all the possible states the quantum register can be in: this is done in preparation for the next

step. This leaves the system in the state

1√
2L

2L∑
x=0

|x〉 |1〉 (21)

|x〉 |1〉 → |x〉 |mx mod N〉 (22)

Applying the above gate to the above state, you obtain two quantum registers: the first

containing the arguments of the function and the second containing the values of the function.

Finally the Fourier transform is applied to register number one again to give the final state

of the system Register number one is then measured giving a value y which can be used to find

9

the period of the function.

Using this value of y the period of the function can be found using continued fractions [9].

This involves dividing the output by the size of the first quantum register (note, this is the basis

size not the number of qubits, so 2n), then finding the convergent of the continued fraction and

testing the denominator to see if it satisfies the expression for the period mp = 1 mod N . If the

convergent becomes 0, without obtaining the period then you have to start again. Also note that

this part can be done on a classical computer, after the measurement the quantum computer is

no longer needed.

Next we need to check if the period is even: if it is we can carry on, if not then unfortunately

one has to rerun the algorithm from the start, with a new value of m.

mp = 1 mod N (23)

It is obvious that the expression above is satisfied. Therefore subtracting one from both sides

gives.

mp − 1 = 0 mod N (24)

It is also required that the period has to be even, so the expression can be factored to give.

(m
p
2 + 1)(m

p
2 − 1) = 0 mod N (25)

If either factor is equal to 0 then the other can be any number, so we require that both are

non-zero. If this requirement is not fulfilled then one has to rerun the algorithm from the start.

If both are non-trivial factors (i.e. neither is zero) then we have the two factors being some

factors of some multiple of N. Therefore calculating the greatest common divisor of one of the

factors and N (which can be done easily using Euclid’s algorithm) we can obtain one of the

factors, then the other can be found simply by dividing N by the first factor.

factor1 = gcd(m
p
2 ± 1, N) (26)

factor2 =
N

factor1
(27)

The reason Shor’s algorithm works is due to the Quantum Fourier Transform applied the

second time. The values of x that correctly give the period of the function add up (interfere)

constructively. This is due to the fact that the coefficients (ωi·x) in the quantum Fourier transform

are roots of unity, and therefore are a cyclic group. If one imagines these roots on the complex

plane, one can see that the values of ωperiod·i are all the same so the amplitudes add constructively

giving a large amplitude when the Fourier transform is applied. The values of x that are not

periods of the function add up (interfere) destructively, this is due to the fact that when the

Fourier transform is applied ωxi will be different roots of unity, therefore summing over them

10

will give zero. This means when the register is measured with a high probability the output will

be a value such that it can be used to find the period.

3 Implementation

3.1 Design

The design of the implemented quantum computer simulation is based on a library design pattern.

As such there is no strict usage of the source code, a host program simply imports the packages it

requires. The source code was packaged into discrete packages to enable maximum extendibility.

Four main packages are contained in the project: Core, Core.Math, Operators and Algorithms.

The Core package contains the fundamental classes required to represent a quantum computer,

with the Core.Math package containing the mathematical structures required. The Operators

and Algorithms packages are extensions of the Core package, which implement common operators

and algorithms on quantum computers.

The Core package contains a single implementation: QRegister, representing a quantum

register and three interfaces, Operator, Algorithm, AlgorithmOutput. The Operator interface is

a representation of a linear operator and its interaction with QRegister objects. The Algorithm

interface is defined such that an Algorithm has a run method, either classical or quantum. In

combination with Algorithm we needed a variable output type to be the result of all algorithms,

the AlgorithmOutput interface represents this in such a way that the only requirement of the

output of an algorithm is that it has a human readable string associated with it.

11

Figure 9: UML description of the Core package and Core.Math package.

12

3.2 Core

The implementation of a quantum computer requires several classes such as Complex, Com-

plexVector and Matrix to do mathematical calculations. These were written with clarity in mind

to provide a simple to use interface instead of a highly optimized one. While the ComplexVector

is simply an array of Complex objects in combination with vector methods, the Matrix class

forms a class hierarchy of two implementations: DenseMatrix and SparseMatrix. Both represent

a generic square matrix, however a DenseMatrix has a complex element for each index while

the SparseMatrix is memory efficient. Two implementations were considered due to the fact

that many of the unitary matrices are not very complex, in fact sparse. A factory method was

created to allow switching between representations depending on a condition: If the number of

non-zero elements in the matrix is above half the elements in the matrix then a DenseMatrix

representation would be used.

The QRegister class is the only implemented class in the Core package, since it represents the

single data structure in a quantum computer. A quantum register is simply a complex vector

that contains all the amplitudes in each eigenstate, therefore classical data would be represented

as sparse vector. However this was not implemented since most algorithms initially put a zero

quantum register into a superposition of all states which would be a dense representation. We

implemented the QRegister class as having an intrinsic ability to be measured, multiple methods

are concerned with this topic.

Multiple situations arose during the project when input data could be corrupted in some form.

As such we implemented an extension to Java’s native exceptions to handle specific quantum

computer exceptions and inform the user of errors without crashing the program.

3.3 Operators

In our simulator operators are defined by a single interface in the Core package, they are declared

to have two methods. The first method general to all operators is that they can be applied to

a QRegister object; the implementation of this method is dependent on the gate. The second

method is an apply method to create a special operator type, CompositeOperator, this method

is general to the extent that it simply acts on the Operator interface and needs no specific infor-

mation about the implementation of Operator it is acting on. By using the CompositeOperator

to create a tree of Operators it is possible to have a single CompositeOperator represent entire

circuits.

We implemented many common operators that come up in quantum computing such as the

Hadamard operator, controlled-V operator, phase shift operator and more. Since the imple-

mentation of the operators is left to a subclass in the design most operators were designed to

be an abstract class implementing the Operator interface. All operators have their individual

packages within the Operators package and are implemented with either a matrix multiplication,

a bit manipulation or a composite of other operators. Parameters required, such as target bit

13

Operator Matrix Bit Manipulation Composite

Hadamard X X
Phase X X

cV X X
Swap X
CNot X X X

CCNot X

Figure 10: Operator implementations

location or control bit location, are accepted through constructors of the base classes. As an

alternative to a bit assignment operator an Operator is completely responsible for required input

and validity of it. This behaviour was chosen, because a bit assignment operator would allow for

a generic operator to be applied to a QRegister without information needed for functionality of

that operator.

The matrix implementation of an operator involves storing a matrix in a defined order of

bases, representing the specific transform to the QRegister object that is performed. This buffered

matrix is then multiplied with the ComplexVector representing the QRegister and transforms it

into a ComplexVector with the operator applied. Since most operators are sparse a matrix is very

wasteful in memory3 and clock cycles, even when our SparseMatrix implementation is used. The

matrix multiplication is the analytic method of computing a quantum result. As an alternative to

matrix multiplication, a bit manipulation method was devised for most operators. This involves

stepping through all bases in a QRegister object and using the specific basis index to implement

the equivalent transform that is applied by the matrix multiplication. This method leads to

a much less memory intensive operator structure and to a O(2n), complexity of the operators,

compared to the O(n3) matrix multiplication complexity; therefore large QRegisters are easily

handled compared to when matrices are used. The last method of implementation was to compose

complex operators of simpler operators that act as a universal set of gates to a quantum computer.

Specifically the controlled-V gate was implemented to allow a mathematically elegant universal

set with Hadamard operators[10]. The CNotCompositeOperator and CCNotCompositeOperator

were both implemented in such a fashion to demonstrate this concept. Using the bit manipulation

implementations of the universal set operators, a very efficient method arose to generate complex

operators such as the CCNot (Toffoli) operator.

3.4 Algorithms

3.4.1 Deutsch-Jozsa Algorithm

The algorithm is implemented using three classes: DeutschJoszaAlgorithm, which contains the

main algorithm set up; DeutschJoszaOracle, which is the quantum gate representing (Uf) and

3Memory usage of DenseMatrix is O(22n)

14

contains the function; and DeutschJoszaOutput, which contains the result, i.e. whether the

function is constant or balanced.

When creating the oracle, the user can decide whether to create a constant or a balanced

function. There are several balanced functions implemented, but the code needs to be changed

to access them, as one balanced function is enough to demonstrate the algorithm.

The whole structure of the simulation is very close to the real implementation. Hadamard

gates are applied to all qubits and then the DeutschJoszaOracle gate (the transform Uf) is

applied to the whole register consisting of the n input qubits and the additional output qubit.

Only one QRegister containing n+1 qubits is used.

The oracle gate uses direct bit manipulation and no matrix representation. The function

f : {0, 1}n → {0, 1} is separated from the apply-method (which represents Uf), so it can be

easily changed.

3.4.2 Grover’s Algorithm

The Grover Algorithm was implemented by using multiple classes to represented elements within

the algorithm. One such class is the GroverOracle this is the equivalent of the Oracle in the

Grover Iteration stage. The GroverOracle contains the answer that the QRegister will be con-

verged to and also supplies information about the answer, i.e. the number of qubits required to

represent it in binary and the base count(2n). We chose this design of the Oracle to semantically

seperate it from Grover’s Algorithm implementation.

Grover’s Algorithm is implement in two different approaches, GroverDiffusionAlgorithm with

an analytic approach using a matrix as a diffusion operator[11] and GroverOptAlgorithm with

a combintation of basewise operators to act on the QRegister. Both of these implementation

only differentiate in the second stage of the algorithm. GroverOptAlgorithm is a more efficent

implementation due to less memory usage of the operators and is more sequential and therefore

less complex to understand.

As a final addition to the Grover’s algorithm implementation we added GroverDisplay to

show the convergence towards the given answer from the GroverOracle. The two dimensional

basis that is shown is generated by a Gram-Schmidt orthogonalisation of the answer base and

initial zero base. The varying colors in the graph represents different steps in the algorithm with

the most recent step colored red. As shown the algorithm begins at the superposition base and

rotates towards the final answer base.

15

Figure 11: GUI produced from GroverDisplay.

3.4.3 Shor’s Algorithm

We will now discuss how Shor’s algorithm was implemented. We will initially talk about how the

quantum part of the algorithm was implemented, and will move on to discuss how the classical

part was implemented.

The quantum part of Shor’s algorithm requires two gates: the Quantum Fourier Transform

gate and the gate which applies the transform below

|x〉 |1〉 → |x〉 |mx mod N〉 (28)

We chose to implement the Quantum Fourier Transform directly as a matrix, rather than

using gates, as the matrix requires one initial calculation of omega and then omega raised to

powers. It can be seen that the number of complex multiplications is

ComplexMultiplications =
∑
i,j=1

(i · j)− 1 (29)

QFT2 =


1 1 1 1

1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

 (30)

Now, examining the gate construction, it is clear that tensor products are required to calculate

just the action of the first Hadamard gate, as a sparse matrix is not implemented in the gates

V =

p−2∑
l=0

k2(p−l) (31)

Complex multiplications are required, where k is the order of the matrices (in this case 2) and

p is the number of matrices being tensor produced together (which for Shors algorithm is Q). It

16

is clear this is exponentially growing (just from the first gate in the circuit), therefore creating

the matrix from the methods above rather than gates is a much more efficient way to obtain the

QFT. Hence this was used it in the simulation.

The gate that applies the transform |x〉 |1〉 → |x〉 |mx mod N〉 was done simply by taking

the tensor product of the two quantum register state vectors, iterating through the possible

values the first quantum register can hold, calculating the corresponding value of the function

and setting the corresponding components of the combined state vector to 14. It was decided to

implement it this way as it was found to be very conceptually hard implementing this using just

gates or a generating a matrix (if either is even possible for all n and m). We felt that a for loop

would be fine, and most likely would be faster than generating a matrix directly or using gates,

then using matrix vector multiplication on the state vector.

The classical part was implemented directly in the Shor’s algorithm method rather than in

a separate class. It was chosen to implement it this way as it seems there are no other methods

to reduce the quantum output to the period that is used: there was no need to separate it out,

so it could easily be replaced.

In the algorithm above you can see there are many places the method could fail. For example:

if the period is odd or m
p
2 ± 1 = 0. To deal with this issue recursive relationships have been set

up such that if the period fails to satisfy one of its requirements, a message is printed out to the

terminal saying it has failed. Then the output value for the method is set to the output of the

method. This seems to have dealt with the problem in an elegant way however there is now risk

of stack overflow occurring. This should not be an issue as the probabilistical Shors algorithm

should find factors much quicker than the processor runs out of stack space.

During the testing process it was discovered that ints were not large enough in the classical

part, it was therefore decided to use BigIntegers in the classical part.

Finally, If there was more time, a GUI could have been implemented to draw the probability

distribution of the final state of the system to see which values are more likely. This would give

a better understanding of how Shor’s algorithm works and would allow us to check that the

quantum part of the algorithm is working correctly easily.

4 Discussion

The finished code contains the basic mathematical tools of quantum computing and a large set

of gates that are needed to build algorithms. These components have been used to implement

Grover’s, Shor’s and Deutsch-Jozsa algorithms, thus proving the concept of a quantum computer.

The algorithm frameworks and gates allow implementations of further algorithms and extensions

to the simulation. The resulting packages are of significant value to test out ideas in theory before

a complicated and expensive physical quantum system is built.

The things we did well were we adhering to good coding practices, i.e. a carefully planned out

4As a quantum register is normalized when it is measured

17

set of abstract classes. The use of version control system, GIT in our case, allowed for efficient

work. This and general organisational effort, like delegation of responsibilities, meant that there

were almost no overlapping efforts and the code base quickly grew as we worked in parallel.

While an implementation of a quantum computer has been achieved, it is still rather limited

in speed and memory capacity. As more qubits are added to the register, the memory and

computation requirements grow exponentially. This is expected, though, as it is a simulation of

a system in an incompatible environment, a quantum computer simulated on a classical computer,

defeats the purpose. These difficulties arise because it is impossible to use the benefits that come

with computations using particles and their quantum effects. Nature has infinite clock cycles.

Other difficulties were technical issues with the version control system which would frequently

prohibit synchronisation of code possibly due to insufficient support from the IDE Netbeans.

There were also some naming convention inconsistencies that caused time loss as they had to be

corrected in order to have coherent code.

The project was completed with a great deal of success but there is always room for improve-

ment. For example, in the interest of completeness, more gates could have benefited from bit

twiddling or otherwise more efficient implementations than matrix manipulation. The universal

set, CNot and Hadamard, both have implementations so it is not a pressing issue. The overall

design is slightly circumvented by having a measure method hidden in some class. The more

consistent approach would be to have a separate measurment gate in the set of universal gates.

Another thing we could have implemented is a more intelligent matrix framework. For example

a matrix that stores values in a set and then points to non-zero values in the actual matrix.

This would allow matrices which do not have enough non-zero values to be sparse but enough

equivalent elements to be represented well. The naming convention inconsistencies could have

been resolved by producing a sample class with every possible type of code in it. This would

serve as a reference while writing code.

5 Conclusion

All components of a quantum computer have been successfully implemented in a Java simula-

tion. With three working algorithms and a framework for extensions, the concept of quantum

computing has been shown viable. Performance has been improved with sparse matrices for data

storage and bit manipulation techniques for faster gate operation.

18

References

[1] Richard Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21, 1982.

[2] D Deutsch. The church-turing principle and the universal quantum computer. Proceedings
of the Royal Society of London, 1985.

[3] R Cleve, A Ekert, C Macciavello, and M Mosca. Quantum algorithms revisited. Proceedings
of the Royal Society of London, 454, 1998.

[4] J Stolze and D Suter. Quantum Computing. Wiley-VCH, Weinheim, 2008.

[5] Jr. Samuel J. Lomonaco. Grover’s quantum search algorithm. Proceedings of Synopsia in
Applied Mathematics, 58:161–179, 2000.

[6] Matthew Hayward, 2008.

[7] Chao-Yang Lu, Daniel Browne, and Jian-Wei Pan. Demonstration of a compiled version
of shor’s quantum factoring algorithm using photonic qubits. Physical Review Letters, 99,
2007.

[8] B. Lanyon, T. Weinhold, N. Langford, M. Barbieri, D. Jamesand A. Gilchrist, and A. White.
Experimental demonstration of a compiled version of shor’s algorithm with quantum entan-
glement. Physical Review Letters, 99, 2007.

[9] Jr. Samuel J. Lomonaco. Shor’s quantum factoring algorithm. Proceedings of Synopsia in
Applied Mathematics, 58:161–179, 2002.

[10] Artur Ekert, Patrick Hayden, and Hitoshi Inamori. Basic concepts in quantum computation.
January 2000.

[11] Raffaele Solc. Grover’s algorithm, 2008.

19

