
Simulating the behaviour of a Rat in an EPM using an 
E-Puck 

 

Roshenac B. Mitchell 
Heriot-Watt	University 

rm32@hw.ac.uk 

Ioannis D. Papaioannou 
Heriot-Watt	University 

idp2@hw.ac.uk
 
 

In this paper we attempt to mimic the contrasting 
exploratory and fear characteristics of an individual rat 
placed in an elevated plus maze. This is achieved by 
evolving the behaviour of an E-Puck robot using an 
artificial neural network and a genetic algorithm.  

Keywords—Elevated Plus Maze, Rat, E-puck, 
Evolutionary Neural Network, Genetic Algorithm 

I.  INTRODUCTION  
In 1955, Montgomery (MONTGOMERY, K C, 1955) set 

out to investigate the conflicting behaviour of fear and 
exploratory drive in rats. This is characterised by an approach-
avoidance behaviour. Following on from his research there have 
been many experiments carried out in order to try and recreate 
his results. Several papers that aim to simulate this research have 
conducted their experiments in an elevated plus maze (COSTA, 
Ariadne A et al., 014).  

 
Figure 1: Set up of an elevated plus maze (CHAROENPONG, 
Theekapun et al., 2012) 

An elevated plus maze gets its name due to the fact that it is 
a platform in the shape of a plus and it is elevated from the floor. 
As can be seen in (Fig. 1), two of the paths are enclosed by walls 
in order to prevent the subject falling while the other two paths 
are open.  

In order to conduct this experiment extensively it is possible 
to recreate this research using robots instead of rats. By creating 
a robot that mimics the rat’s behaviour in this surrounding, it is 
possible to gain a deeper understanding of how a rat’s brain 
work. The conflicting behaviours should be evident by the 

approach and avoidance behaviour (MONTGOMERY, K C, 
1955) of the robot.  

II. LITERATURE REVIEW 
This research has been recreated multiple times with each 

researcher using their own variations in order to create the 
desired confliction behaviour. For each of the papers reviewed 
there are a number of key topics that will be focused on. These 
include the topology, fitness function, genetic algorithm and 
selection approach. 
 

A. Topology 
When creating an artificial neural network, one of the first 

things to decide on is the topology. This represents the number 
of nodes (neurons) that will be used. These include the input, 
hidden and output nodes. As well as this, the number of layers 
and node connections need to be defined.  In both (COSTA, 
Ariadne et al., 2013)  and (SHIMO, Helder K et al., 2010) the 
Elman architecture is used for their topology. This is defined as 
a recurrent network where the recurrent signals are passed from 
the hidden layer. The use of recurrence acts as a memory. These 
recurrent inputs, which are also know as context layers 
(SHIMO, Helder K et al., 2010) , allow the previous outputs to 
be stored. The final inputs are given by the sensor values and 
recurrent signals from the hidden layer.  

 

 
Figure 2: Diagram of Elman and Jordan Neural Networks (TURING 

FINANCE, 2014) 

 
In both (COSTA, Ariadne A et al., 014) and (COSTA, 



Ariadne et al., 2013) their topology results in 4 neurons in the 
hidden later and 4 neurons in the outputs layer. These output 
neurons correspond to the following: 

• Forwards 

• Rotate left 90◦ 

• Rotate right 90◦ 

• Stop 

 

 These outputs allow the robot to know what direction to 
travel in during the next time step. It can be seen from these 
output nodes that two time steps are needed in order for the robot 
to travel a full 180 degrees so that it is facing in the opposite 
direction. 

 The output of the neurons in (SHIMO, Helder K et al., 2010) 
are given by the following function where y

i  is the output, and 
w

j is the synaptic weight associated to input x
j (or the output of 

the neuron j of the previous layer)  and i is the current neuron:   

 

where φ is the activation function. The activation function is 
usually a hyperbolic, signal or logistic function. (SHIMO, 
Helder K et al., 2010) 

B. Fitness Function  
A fitness function defines the given ideal conditions for an 

ideal controller. It tends to be split up into two terms. One part 
rewards the robot for correct behaviour while the other term 
punishes the robot (COSTA, Ariadne A et al., 014). In the 
example of the rat in the elevated plus maze (EPM), the reward 
is equivalent to the curiosity the rat (or robot) portrays. This 
behaviour will result in the value of the fitness function to 
increase. The punishment however, is equivalent to the fear the 
rat (or robot) displays, which in turn will decrease the fitness 
function (COSTA, Ariadne A et al., 014; COSTA, Ariadne et 
al., 2013). This fear is show when the rat is in the open arms 
and it has a higher risk of falling.  One suggested fitness 
function equation can be seen below.  
 

 
Figure 3: Suggested Fitness Function (COSTA, Ariadne et al., 2013) 

The same fitness function is used in (COSTA, Ariadne A et 
al., 014) where t is used in place of pt. An explanation of the 
given terms can be seen in the figure below (Figure. 2). 
 

 
Figure 4: Explanation of parameters in the fitness function (COSTA, 

Ariadne A et al., 014) 

 
In (SHIMO, Helder K et al., 2010) an alternative fitness 
function is used:  
  

 

where pi(x) is the penalty term, ai is the significance of that 
term and  fmax is the maximum fitness value. The fitness 
function in  (SHIMO, Helder K et al., 2010) penalises an 

individual that keeps returning to the same position as this 
suggests it is not curious. 

C. Genetic Algorithm   
Each ‘individual’ is characterized by its own genotype. This 
tends to be an array or matrix of number that represent the 
individual weights for the different neuron connections for each 
layer of the topology. These weights are then used to define the 
behaviour of the individual.  
 The evolution of the genotype and weights of the 
artificial neural network are controlled by the genetic algorithm. 
As will be discussed later, there are number of alternative ways 
to pick the next generation population. In (COSTA, Ariadne A 
et al., 014), a combination of elitism and tournament is used. 
This process is then repeated for the number of set generations.  

D. Selection Strategies 
As discussed in (COSTA, Ariadne et al., 2013) there are 

three main selection strategies. 
• Elitism  
• Tournament  
• Roulette Wheel 

Elitism is achieved by selecting a set number of the best 



individuals and copying them to the next generation without 
any change. In  (COSTA, Ariadne A et al., 014) and (COSTA, 
Ariadne et al., 2013) the two best individuals are chosen. 

In the same paper the rest of the new population is selected 
using tournament selection. In tournament selection, the 
population is paired randomly and each pair is compared 
according to its fitness score. The one with the highest score is 
selected to breed (to become one of the parents). Its offspring 
will then pass to the new generation.   

The roulette wheel method increases the probability of the 
fittest genotypes to be chosen (SHIMO, Helder K et al., 2010).  
is a probabilistic selection, visualized as a wheel, where each 
individual covers a percentage of the wheel proportional to its 
fitness score. Thus as the wheel turns to select the individual for 
breeding, the ones with the highest score (or surface percentage 
in the wheel representation) are more likely to be selected as 
parents. 

 

Figure 5: Roulette wheel approach (NEWCASTLE UNIVERSITY , 
2016) 

It is concluded in (COSTA, Ariadne et al., 2013) that 
elitism is necessary in order to keep the best individuals in the 
next population.  

III. DESIGN 

A. Topology  
We are using a Recurrent Neural Network (RNN) using the 

Jordan architecture. The topology consists of 11 input nodes (8 
distance sensors plus 3 ground sensors) one hidden layer of 4 
neurons, 2 output nodes, each controlling the speed of a wheel 
and 2 context units. The output nodes at each iteration are copied 
to these context units. These are then fed back into the hidden 
layer on the next iteration. As the network's purpose is to plan 
actions for the actuators of the E-puck, actions already taken 
(output) must be remembered to provide acceptable results. As 
previously explained, the context units act as a short-term 

memory for the network. All the network is fully connected, 
providing 52 (11 inputs nodes * 4 hidden nodes + 4 hidden nodes 
* 2 output nodes) weighted connections between the inputs, 
hidden layer and outputs, and 8 recurrent weighted connections 
from the context to the hidden layer.  

 
Figure 6: Chosen topology 

In the above topology, the two output nodes provide the wheel 
speed at time t, while the context nodes hold the previous output 
of the network (speed of wheels at time t-1). 
The activation function used to fire all nodes is the hyperbolic 
tangent (tanh), as we want the output to receive negative values 
as well in order for the wheels to be able to turn backwards. The 
weights of the network are going to be evolved by the genetic 
algorithm (GA). The activation function for the neurons in the 
hidden layer is given by the function, 

 
while for the output neurons, 

 
where wij are the weights between the input and the hidden 
layer, cik the recurrent connections and yt-1

k the output of the 
network at the previous time step. 



B. Genetic Algorithm 
1) Genotype 

The genotype is encoded as an array of 60 double 
values, each representing one of the network's weights 
(including the recurrent connections). The genotype can take 
values between –1 and 1. 

 
2) Fitness Function  
The fitness function is split up between reward and 

punishment. The robot is rewarded the further distance it travels 
and it is punished if it falls off the maze, gets and stays near the 
walls or continues rotating with small circle radius. The fitness 
score is represented by the following function: 

 
 Where D denotes the distance travelled reward, S the penalty of 
the summed values of the distance sensors, C represents the 
penalty for going in small circles and G is the penalty for going 
outside the maze. a, b, c and d are weights for each individual 
reward/penalty (e.g. falling off the edge of maze is penalized 
much heavier than standing near a wall). The way the fitness 
function is calculated is explained in more detail in the 
"Implementation" section. 

 

3) Evolutionary Parameters 
The genetic algorithm was setup using the following 
parameters: 

Parameter Value 
Population size 50 

Max generations 50 
Crossover method 2 point crossover 

Mutation probability 6% 
Mutation deviation 20% 
Selection method Rank Selection 

Elitism 10% 
 

IV. IMPLEMENTATION 

As with the discussed research it is planned to use an 
elevated plus maze. Instead of elevating the maze, 
ground sensors were used to detect whether the robot 
had fallen off the maze or not.  

 

Figure 7: Elevated Plus Maze 

 

Two controllers were created. One that controls the 
behaviour of the robot (from now on this will be known as the 
controller) and one supervisor controller that is responsible for 
resetting the position of the robot and running the genetic 
algorithm (GA) (called supervisor from now on).  
Communication between both the controller and the supervisor 
happens via two sets of emitter/receiver pairs, each 
communicating in a different channel. 

Instead of transmitting the actual sensory values back to the 
supervisor for evaluation, we are using a reward/punishment 
system directly on the controller itself. Five (5) counters are 
being used, each representing a variable in the fitness function 
(getting stuck into a wall is calculated using two counters). Each 
time the robot follows an action that should be rewarded or 
penalized, the appropriate counter is increasing by one. Thus, 
only these counters are send back to the supervisor and weighted 
accordingly they calculate the fitness score of the evaluated 
genotype. The system works like this: 

• Counter 0 (denoted as G in the fitness function and 
representing the existence of a cliff) is increased every 
time the robot leaves the black area of the maze. 

• Counter 1 (denoted as S in the fitness function) 
represents the summed value of all distance sensors. If 
it exceeds a certain threshold, the counter is increased. 

• Counter 2 is increased every time the wheels turn 
backwards, as while using Kinematics, and the robot 
gets stuck into a wall, the wheels turn back and forth. 
This counter along with counter 1 penalize this 
behaviour.  

• Counter 3 (denoted as D in the fitness function) counts 
the times the robot moved between two subsequent 
time steps. This is done by using the differential wheels 
encoders of the robot. The differential wheel encoders 
calculate the rotation of the wheel. The value of the 
encoder continuously increases as the robot moves, but 
stop increasing when it collides with an object. When 
the "kinematics" property of E-puck is TRUE, then the 



wheels are not sliding even if they are turning, making 
this property extremely useful for detecting whether the 
robot is stuck against a wall. By keeping track of this 
value at the previous time step, we calculate the 
movement of the robot, so every time it has actually 
moved more than a certain threshold, this counter 
increases. 

• Counter 4 (denoted as C in the fitness function) counts 
the times the robot has moved in small circles. This is 
achieved by measuring the difference between the 
wheels. Every time step this difference is over a 
threshold the counter increases, while every time it is 
below that, it decreases. As while going in a circle the 
difference between the wheels will remain constantly 
over a certain value (according to the radius of the 
circle), the counter will increase in extremely high 
numbers, thus detecting that the robot is actually 
moving in a small circle. 

 

The supervisor starts the evolution process where a new 
genotype (the weights of the network) is created and sent 
through the emitter to the controller in order to be evaluated. 
Every 120'' a new genotype is send to the controller.  The 
controller, while the simulation is executed, is constantly 
running, and constantly checking its receiver for new genotypes. 
The controller runs in time-steps of 32ms. As the emission / 
transmission is carried out using a buffer in a last in first out 
(LIFO) manner, synchronisation must be achieved between the 
two controller's transmissions. To achieve this, an internal 
counter in the controller is decremented on each time-step 
counting down until 120'' have passed (120000 / 32 = 3750 
steps). Once it reaches 0, the following things are happening in 
the controller: 

1. The reward / punishment counters are transmitted 
back the supervisor for evaluation.  

2. The wheel encoders, reward/punishment counter and 
sensory input variables are reset, in order to start 
measuring these values for the next evaluation cycle. 

3. The synchronization counter resets to the maximum 
number of steps. 

Once this data is received by the supervisor, the fitness function 
is applied and the score of that particular genome is calculated. 
Then the supervisor takes the next genome of the population 
and send it to the controller and the same procedure continues. 

V. DISCUSSION  
When trying to achieve a solution to this elevated plus maze 

task there are two main approaches that could have be applied. 
These are a behaviour-based or an evolutionary-based robotics 
approach.  

A. Behaviour-Based Robotics Approach 
Behaviour-based robotics relies on a set of fixed behaviours 

provided to the robot (FLOREANO, Dario and Mondada, 
Francesco). The theory, goals and methodology have to be 

thought of by the user as well as the layer architecture 
(FLOREANO, Dario and Mondada, Francesco). 

 

B. Evolutionary-Based Robotics Approach 
Evolutionary-based robotics relies on learning and adaption 

using genetic algorithms and artificially neural networks 
(FLOREANO, Dario and Mondada, Francesco). By applying a 
set of rules, these allow the program to evolve in a way to 
achieve the desired behaviour.  By developing the controller, it 
allows the program to reproduce only the fittest chromosomes 
with regards to the set fitness criteria (FLOREANO, Dario and 
Mondada, Francesco).  

As the program is not hard coded this may result in some 
unexpected behavioural side effects. However, in general 
evolutionary based robotic approach is often used as artificially 
neural networks are good at simulating artificial evolution 
(FLOREANO, Dario and Mondada, Francesco). 

VI. EVALUTION 
After evolving the best controller, it was then run for 5 

minutes with the aim of completing the required task.  

 The amount of time it took to complete the maze can be seen 
in the table below. The vary times are due to slight repositioning 
of the robot before running the simulation.  

 
Time 

First Run Second Run Third Run Total Time (Average) 

Task 2.14 2.20 2.16 2.17 

 

 As can be seen from the table, the robot successfully 
travelled the maze. However, the developed robot was seen to 
be rather fearful and never ventured on to the open fingers of the 
maze.  

It was found that by adding the hidden layer in the topology 
allowed the e-puck to learn and evolve quicker and better than 
without this layer. The possibility of the sigmoid function was 
discussed for the activation function but as was stated previously 
it was found that the hyperbolic tan function allowed E-puck the 
ability to drive backwards. the maze.  

Additionally, the fitness function was an extremely 
important factor when evolving the e-puck. Many sensor values 
were considered including the distance, ground and light 
sensors as well as the wheel encoding and speed. After 
analysing the performance of the different genotypes relative to 
the sensors we were able to narrow it down to the mentioned 
elements: ground sensor, sensor sum, wheel speed, whether it 
is going in a circle and encoder value i.e. distance. These results 
were then put in a graph and the weights were analysed in order 
to find optimum values the represented the performance of 
these genotypes.  



 
Figure 8: Measured punishment and reward values 

 
By having the high weighting for when the robot fell, the 

controller quickly evolved to no longer fall off the maze. 
Additionally, while we didn’t want to robot wheels going 
backwards while hitting a wall this resulted in the reverse 
functionality of the robot being punished which made the robot 
more fearful as it couldn’t move backwards off an open maze 
platform.  

 

VII. CONCLUSION 
These results show that why it is possible to create a robot 

that simulates a rat, there are many different variations possible. 
In order to find the best method a number of different 
topologies, fitness function and activation functions would need 
to be tested in comparison to once another in order to see which 
one performs the best. During the course of this project it was 
made clear that designing the fitness function correctly was the 
most crucial part of the implementation as this is what dictated 
the behaviour of the robot. Additionally, synchronisation 
between the supervisor and controller was vital in order to 
update the fitness function correctly.    
 

VIII. BIBLIOGRAPHY 
CHAROENPONG, Theekapun, Yuttachon PROMWORN, 
Wongwit SENAVONGSE et al. 2012. An experimental setup 
for measuring distance and duration of rat behavior. In: 
Biomedical Engineering International Conference 
(BMEiCON). IEEE. 

 
COSTA, Ariadne A, Silvio MORATO, Antonio C ROQUE, 
and Renato TINÓS. 014. A computational model for 
exploratory activity of rats with different anxiety levels in 
elevated plus-maze. Journal of neuroscience methods. 236, 
pp.44-50. 

 
COSTA, Ariadne, Patr ́ıcia A VARGAS, and Renato TINÓS. 
2013. Using explicit averaging fitness for studying the 
behaviour of rats in a maze. Advances in Artificial Life, ECAL. 
12, pp.940-946. 
FLOREANO, Dario and Francesco MONDADA. Automatic 
Creation of an Autonomous Agent: Genetic Evolution of a 
Neural-Network Driven Robot. 

 
MONTGOMERY, K C. 1955. The relation between fear 
induced by novel stimulation and exploratory drive. ournal of 
comparative and physiological psychology. 48(4), pp.254-260. 

 
SHIMO, Helder K, Antônio C ROQUE, Renato TINÓS et al. 
2010. Use of evolutionary robots as an auxiliary tool for 
developing behavioral models of rats in an elevated plus-maze. 
In: InNeural Networks (SBRN), 2010 Eleventh Brazilian 
Symposium. IEEE, pp.217-222. 

 
TURING FINANCE. 2014. 10 misconceptions about Neural 
Networks. [online]. [Accessed 30 March 2016]. Available from 
World Wide Web: 
<http://www.turingfinance.com/misconceptions-about-neural-
networks/> 

 


