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1 Introduction	
A humanoid robot is a robot that has a general structure of the human body, such as two 

legs, two arms, a torso, and a head (Williams, 2004). Although, some shapes of a humanoid 
robot may not be exactly the same as that of a human, a humanoid robot has a basic similar 
appearance and functions of a human. For its human-like features described above, a humanoid 
robot has a potential to conduct tasks in human environments. Furthermore, a humanoid robot 
may even use tools designed for a human without modification. The development purpose of a 
humanoid robot is to make a robot that thinks and acts like a human (Williams, 2004). At the 
end, the humanoid robot will do work on behalf of a human, and a human can concentrate on 
more productive activities. The other significant development purpose is to understand mental 
and physical fundamentals of a human. So, many researchers from different fields adopt 
humanoid robots for their research platform for its synthetic characteristics. 

The aim of this project is inserting a pin to a hole using Darwin-Op robot. To solve this 
iterative problem, a humanoid must be constructed considering expandable-modifiable system 
structure, high performance, simple maintenance, familiar development environment, and 
affordable prices. Therefore, in this paper, we suggest the design method for humanoid platform 
DARwin-OP (Dynamic Anthropomorphic Robot with Intelligence - Open Platform) as shown in 
Fig. 1 which has a network based modular structure and a standard PC architecture to meet 
above requirements (Ha, Tamura and Asama, 2013).  

Darwin-OP is an affordable, miniature-humanoid-robot platform with advanced 
computational power, sophisticated sensors, high payload capacity, and dynamic motion 
ability to enable many exciting research and education activities (Ha, Tamura and Asama, 2013). 

	
Figure	1:	Darwin	Robot 

 
1.1 System	overview	

DARwIn-OP has a network-based modular structure and a standard PC architecture, as 
shown in Figure 2. All devices, such as actuators, sensors, LEDs, buttons, and external I/Os, are 
connected to the sub-controller by a serial bus network which fully supports DYNAMIXEL 
protocol (Ha, Tamura and Asama, 2013). Each device has a memory-mapped operation structure 
with designated ID. For the main controller, we adopted the Intel’s ATOM Z530 CPU, normally 
used for netbooks (Ha, Tamura and Asama, 2013). The main controller communicates with the 
sub-controller by USB. The sub-controller works as a gateway to access devices. Therefore, all 



devices are encapsulated as an USB device, which means that the development environment is 
just like a standard PC (Ha, Tamura and Asama, 2013).  

	
1.2 Specification		
- Default walking speed: 24.0 cm/sec (9.44 in/sec) 0.25 sec/step - user modifiable gait 
- Default standing up time from ground: 2.8 sec (from facing down) and 3.9 sec (from facing up) 
- user modifiable speed 
- Built-in PC: 1.6 GHz Intel Atom Z530 on-board 4GB flash SSD 
- Management controller (CM-730): ARM CortexM3 STM32F103RE 72MHz 
- 20 actuator modules (6 DOF leg x2+ 3 DOF arm x2 + 2 DOF neck) 
- Actuators with durable metallic gears (DYNAMIXEL MX-28) 
- Self-maintenance kit (easy to follow steps and instructions) 
- Standby mode for low power consumption 
- 3Mbps high-speed Dynamixel bus for joint control 
- Battery (30 minutes of operations), charger, and external power adapter  
   (Battery can be removed from robot without shutting down by plugging in external power 
before removal) 
- Versatile functionality (can accept legacy, current, and future peripherals) 
- 3-axis gyro, 3-axis accelerometer, button x3, detection microphone x2 
 

	
Figure	2:	Darwin-op	structure 

 
 

2 Robot	design	and	simulation		
We will perform the modeling, simulation and control of a humanoid robot – DARWIN to 

give some demonstrations to show the capability of the humanoid robot. It will cover the 
simulation of the motion of the robot using   Webot, Solidworks , Proteus and C++ software.    
This model must include at least the servo module, trajectory planning module, inverse 
kinematics module and all forward kinematic module if needed. 



 
2.1 The	Robotics	Simulators	

A robotics simulator is used to create embedded applications for a robot without depending 
on the actual physical machine, thus saving cost and time. These applications can be transferred 
onto the real robot without modifications. The use of a robotics simulator for development of a 
robotics control program is highly recommended regardless of whether an actual robot is 
available or not. The simulator allows for robotics programs to be conveniently written 
and debugged off-line with the final version of the program tested on an actual robot. Some 
examples of robot Simulators are listed below: 

• Webot  
• V-REP 
• Gazebo etc. 
 

2.1.1 Webot	Robot	Simulator	
Webots is a professional robot simulator widely used for educational purposes. It uses the ODE 
(Open Dynamics Engine) for detecting of collisions and simulating rigid body dynamics. The 
ODE library allows one to accurately simulate physical properties of objects such as velocity, 
inertia and friction. In addition, it is also possible to build new models from scratch. When 
designing a robot model, we specify both the graphical and the physical properties of the objects.  
The graphical properties: 

• shape  
• dimensions  
• position 
• orientation 
• colors 
• texture of the object 

The physical properties:   
• mass, 
• friction  factor  as well as the spring and damping constants. 

 

Webots includes a set of sensors and actuators frequently used in robotic experiments,   
e.g.  proximity sensors,  light sensors, touch sensors, GPS, accelerometers, cameras, emitters and 
receivers, servo motors (rotational & linear), position and force sensor, LEDs, grippers, gyros 
and compass. The robot controller programs can be written in C, C++, Java, Python and 
MATLAB.  In our project we used C++ language. 



 
Figure	3:	Simulation	of	a	Robotis	DARwIn-OP	in	Webots	

 
 
Webot is not just a simulator, it is also possible to transfer a  controller and objects previously developed 
in the simulation on to the real robot. 
 
2.1.2 Features	

• Fast robot prototyping 
• Physics engines for realistic movements using ODE 
• Realistic 3d rendering. Standard 3d modeling tools or third party tools can be used to 

build the environments. 
• Dynamic robot bodies with scripting:  C, C++, Perl, Python, Java, URBI, MATLAB 
• Can simulate humanoid robots. For example:   DARwIn-OP , Nao, , Fujitsu HOAP2, 

Kondo KHR-2HV, KHR-3, etc. 

	
2.2 Technical	information	
Main Programming Language C++ 
Formats support WBT, VRML'97 
Extensibility Plugins (C++), API 
External APIs C++ 

 
2.3 The	Robotics	World	
With Webots™, it is easy to create state-of the-art virtual environments for our robot 
simulations, using advanced graphics, with lights, shading, texture mapping, shadows, etc. 
Moreover, Webots allows us to import 3D models from most modeling software through the 
VRML97 standard. 
 
Note:  In our project, the hole part was prepared in CAD and transferred to Webot. 
 
Our design robotics world (Fig. 5) consist of: 

• Hole 



• Red Pin 
• Darwin Robot  
• Floor 

 
 
 
2.4 	Simulation	with	the	control	of	Darwin	Robot	
The aim of this project was to fully integrate the DARwIn-OP in Webots.  Webots is a simulator 
for mobile robots and DARwInOP is an open source miniature humanoid robot platform.   
This integration has been divided in three main steps: 

• Creation of a simulation model of the robot.  
• Creation of a cross-compilation tool. 
• Creation of a remote-control tool. 

 
2.4.1 Simulation	model	
We tested our controller in simulation, without any risk of damaging the robot. We also can run 
automatically a lot of different simulations in a very small amount of time (to tune up parameters 
for example), which would be impossible to do with the real robot. The simulation model of 
DARwIn-OP is design to be as close as possible to the real one. It is equipped with the following 
sensors and actuators: 
 • 20 servos  
• 5 LEDs (including 2 RGB ones)  
• A 3 axes accelerometer  
• A 3 axes gyroscope  
• A camera 
 
 

Figure	4:	Robot	World Figure	5:	Robot	World	



  	

Figure	6:	Position	of	the	servos. 

 
The following sensors/actuators are not present on the simulation model:  
• The three buttons on the back of the robot are not present because they have no interest in the      
simulation. 
 • The microphones are not present in simulation because sound is not yet supported in Webots. 
 • The speakers are not present too because sound is not yet supported in Webots, but this will 
certainly be added soon. 
 
 
 

2.4.2 Cross-compilation	
A cross-compilation tool has been made in order to allow the use of controllers made in 
simulation on the real robot without any need of modifications. When our controller is doing fine 
in simulation, we will be able to send and run it on the real robot without changing anything to 
our code, just by pressing a button in the robot window. 
To perform the Cross-compilation, send your controller to the real robot and make it run on it. 
This is done by going to the ‘Transfer tab’ of the robot window and perform followings steps. 

§ Set the connections settings: 
• IP address 

ü Ethernet cable  
ü Wifi connection 

•  Username 
• Password 

§ Change the Makefile.darwin-op file 
§ Complete the “Robot Config”  section of the config.ini   file 

• Time step parameter 
• Camera resolution parameter 



§ Send a controller to the robot. 
§ Install a controller to the robot 

 

	

Figure	7:	Transfer	tab	of	the	robot	window 

 
2.4.3 Remote-control	
	
To debug or understand our controller’s behavior, we will be able to see in real time the state of 
all the sensors and actuators on the computer screen. This is available both in simulation and on 
the real robot, and here again this is done in just one click. We will also be able to run our 
controller on the computer, but instead of sending commands to and reading sensor data from the 
simulated robot, it sends commands to and reads sensor data from the real robot. 
 
Remote-control, is much simpler to use than cross-compilation, we do not set the time step in 
any files, or to edit any specific makefile, the exact same controller that in simulation can be 
used for remote control (without even having to recompile it). Moreover, the remote-control 
mode allows us to visualize the state of the sensors and actuators of the real robot in real time. 
 
 

3 Software	Development		
 
3.1 Requirements	
 
As previously discussed, the aim of this project was to get the Darwin-op robot to find a pin, 
pick it up and put it through a hole. In order to complete and develop this project extra 
specifications needed to be defined. This included assumptions needed and made for this project, 
for example the colour of the pin and the size of the hole. The full specification list can be found 
below.  



 
3.1.1 	Specs	

• Assume pin is always on the floor (below robot arm level) 
• End of the pin should be a distinct colour 
• Assume the hole is at arm level 
• Hole should be large enough for the Darwin-op robot arm to fit through it 
• Pin is within 0.5-meter radius of the robot 
• Hole is within 0.5-meter radius of the robot 
• 30 min time limit to complete the task (battery length) 
• Floor is a block colour i.e. not patterned 
• Floor is a different colour from the pin 
• Hole has a distinct outline 
• Hole is vertical  
• Assume ball is the same side of the hole as the robot 
• Ball is always red (nothing else can be red) 
• Hole always a circle (nothing else can be circular from eye level up) 

 
3.2 Analysis 
 
Once the specifications have been defined it was then possible to move on to the analysis. Here 
the key use-cases are defined including their description, preconditions and triggers.  
 
3.2.1 Use	Cases	
 

Use Case Number 1 
Use Case Name Find the red pin 
Use Case Description The robot should scan its head up and down (eye 

level and below) while turning in an 
anticlockwise direction looking for the pin.  

Use Case Preconditions N/A 
Use Case Trigger Play Button is pressed 

 
Use Case Number 2 
Use Case Name Walk to the red pin 
Use Case Description The robot should use a mixture of dynamics, 

control and trajectory planning to walk towards 
the pin. When walking towards the pin the robot 
should aim slightly to one side of the pin in in 
order to be positioned correctly to pick the pin 
up with the robots hand. 

Use Case Preconditions ‘Find the red pin’ 
Use Case Trigger Once the pin has been found  

 
Use Case Number 3 
Use Case Name Pick up / touch the pin 
Use Case Description The Robot must use kinematics in order to touch 

the pin. The robot needs to squat down and 
straighten its arm.  

Use Case Preconditions ‘Walk to the red pin’ 
Use Case Trigger Once the robot is next to the pin 

 



Use Case Number 4 
Use Case Name Find the circular hole 
Use Case Description As before, the robot should scan its head up and 

down (this time it should be eye level and above) 
while turning in a anticlockwise direction 
looking for the hole. 
 
It is proposed to use circle detection to find the 
hole. While colour detection could be used it is 
hoped the circle detection would make the hole 
finding more distinct. 

Use Case Preconditions ‘Touch the pin’ 
Use Case Trigger After the pin has been touched 

 
Use Case Number 5 
Use Case Name Walk to the hole 
Use Case Description The robot should use a mixture of dynamics, 

control and trajectory planning to walk towards 
the hole. When walking towards the hole the 
robot should aim for the centre of the hole.  

Use Case Preconditions ‘Find the circular hole’ 
Use Case Trigger One the hole has been found 

 
Use Case Number 6 
Use Case Name Put the pin through the hole 
Use Case Description The robot should straighten one or both of its 

arms and put the arm holding the pin through the 
hole.  

Use Case Preconditions ‘Walk to the hole’ 
Use Case Trigger Once the Robot is at the hole 

 
Use Case Number 7 
Use Case Name Check if fallen   
Use Case Description If the robot falls over on its front or its back it 

must recognise this and push itself back up to 
standing.  

Use Case Preconditions  
Use Case Trigger If the robot has fallen over  

 
3.3 Design	
 
Once the use cases were stated it was then possible to start designing the system. As previously 
mentioned the C++ program language was chosen as Webots supports this language and it allows 
for object orientated program to be used. The code was written in an object orientated design in 
order to provide modularity and reusability. It also allows for encapsulation allowing classes to 
hide and protect certain values.  
 
Two main classes were defined; the robot class and the target class. Both the pin and the hole 
extend the Target class. Additional target items can be added, allowing the robot to find, walk 



and interact with different targets in different manners. Details of these classes can be seen below 
in the class diagram.  
 
3.3.1 Case	Diagram	
 
 

 

 
 
3.4 Implementation		
 
As can be seen from the class diagram the software was split up into 5 different classes. The 
controller run method is shown below. The controller constructor method first creates an instance 
of the robot, pin and hole classes. The controller run method then calls each of the use-cases in 
turn. A call to the setup is done after finishing with the first item in order to make sure the 
Darwin-op is back to its walking state. Use case 7, ‘Check if fallen’, is called during each update 
to the timestep in order to make sure it is always checking that the Darwin is still up right.   
 

void PinInHoleController::run() 
{  
    robot->findTarget(pin);  // use case 1 
    robot->walkToTarget(pin); // use case 2 
    pin->interactWithTarget(); // use case 3 
     
    robot->setup(); 
     



    robot->findTarget(hole); // use case 4 
    robot->walkToTarget(hole); // use case 5 
    hole->interactWithTarget(); // use case 6 
} 
 

Once all use cases are completed the destructor is called on each of the object in order to avoid 
any memory leaks.  
 
As can be seen from the code above there are 3 main methods: 

• findTarget  
• walkToTarget 
• interactWithTarget 
 

Each of these methods have slight variations depending on what target the function is dealing 
with. A description of each of these methods and how they vary are explained below.  
 
3.4.1 findTarget	
 
When searching for the target the robot moves in a counter clockwise rotation while moving its 
head up and down. The range of head movement is limited depending on the target. Once the 
object is found the checkIfFound() method returns true and the robot can start walking towards 
the target.  

 
3.4.1.1 Pin	
 
The pin is found by using one of Darwin’s pre defined methods in its vision manager. The vision 
manager is constructed with a specific colour hue, in this case red. The ‘getBallCenter’ method is 
then called on this manager. This method returns the x and y axis of where the center of the red 
object was found in the camera image.  
 
3.4.1.2 Hole	
 
While the same method for the pin could have been used for the hole it was decided to use the 
openCV circle detection method instead. The camera image first needs to be filtered before the 
circle detection is applied. By converting the image to grey scale and blurring the image it allows 
the circle detection to be more accurate and makes it easier to detect. Once the circle is detected 
(Fig. 1 , small adjustments are needed to the x and y axis values in order to keep the circle 
focused in the robot’s vision.  
 



 
Figure 8: Circle detection applied on image 

 

3.4.2 walkToTarget	
 
Once the target has been found the robot starts to walk towards it given the specified x and y axis 
values. After each step the new relative x and y axis coordinates are then calculated and the step 
it repeated until the robot reaches the object. The stop is different depending on the target object. 
 
3.4.2.1 Pin	
 
As the robot moves closer to the pin it has to look further down towards the ground which in turn 
changes the y axis value. From this it is possible to gauge how far the robot is from the pin and 
stop when appropriate 
  
3.4.2.2 Hole	
 
Knowing when to stop at the hole is a bit more of a challenge. The robot moves towards the 
circle until it can no longer detect a circle (this is hopefully because the robot is too close to the 
hole). At this point it walks a set number of steps to get closer to the hole.  
 
3.4.3 interactWithTarget	
 
Different targets require different forms of interaction. When the robot arrives at the pin it should 
pick it up or touch it, however when the robot arrives at the hole it should put its arm through it.  
 
3.4.3.1 Pin	
 
Assuming that the robot has reached its target, the robot can then touch the target. This involves a 
combination of straightening out its arm to the side and bending its leg (Fig. 2).  
 



 

Figure 9: Darwin-op robot touching the 'pin' 

 

3.4.3.2 Hole	
 
Assuming the robot has reached its target the robot can then straighten out its arm in order to put 
its arm thought the target (Fig. 3). In this case both arms are straightened as there is no control 
where the robot is relative to its target. 
  

 
Figure 10: Darwin-op places its arm through the hole 

3.5 Challenges	
 
While writing this software there were a number of challenges and constraints. As can be seen, 
the arm that Darwin currently has does not allow for objects to be picked up. This was due to 
being unable to control the custom made gripper within Webots. As a results, when simulating 
this task, the robot touched the pin instead of picking it up. 
 
 Another issue was found when trying to get the Darwin to walk towards the hole. As explained, 
gray scale was needed in order to blur the image and get circle detection. However, when trying 
to do this directly in the CircularHole class the controller would crash. As a get around, the 
image was changed to gray scale in the robot class and then passed across. A number of issues 
were also found with finding and walking to the hole. The circle detection isn’t that robust. 
Minor changes to both the x and y axis had to be made in order to keep the circle in the robot’s 



sight. Additionally, if the robot was at an angle to the hole, the hole would not be detected as it 
was viewed as an ellipse rather than a circle.  
 
Another the main issues with the hole was knowing when the robot had reached the hole. As 
expected, as the robot got closer to the hole, the circle appeared bigger. Eventually, the circle 
became too large to fit in the camera so the robot was no longer able to detect it. Seeing as the 
Darwin-op does not have any distance sensors, at this point the robot is hardcoded to walk a set 
number of steps until it reaches the hole.  
  
3.6 Further	Work	
 
While the project managed to achieve a number of its goals there are a number of improvements 
that could be implemented in future work.  
 
As discussed, we were unable control the custom gripper within Webots. If this was possible 
then the methods in the redPin class would need to change from touching the pin to picking up 
the pin.  
 
Another main issue was detecting and know when to stop at the hole. OpenCV circle detection 
was used but there may be other alternatives that allow the robot to navigate to the hole better. 
Currently the robot putting its hand through the hole is not stable as it is chance as to whether the 
robot put its left hand, right and or no hand through the hole i.e. straightens its hands either side 
of the hole. Ideally the robot should put the same hand that picked up the ball through the hole in 
order to put the ball through the hole.  As the code is modular it is possible to improve the code 
for the Hole without effecting the robot finding the pin.   
 
One last improvement would be to update the pin class in order to make the changing of the pin 
easier. By changing the vision manager values it should be possible to enter any colour of pin for 
the robot to find. 

4 Design		
 
The purpose of this chapter is to tackle the issue of designing a new gripper, or at least, a part that 
would sustain a gripper which could then be used for the objective at hand. Here will address our 
choices for software, the assumptions that were made in our design decisions, the process through 
which we designed and manufactured the part and the final result itself. 
 
4.1 CAD	Software	
Of the many choices available to us for designing a 3D model, our decision fell on Solidworks for 
3 main reasons: 

• Productivity 
o Intuitive 3D design, with a focus on innovation. 
o Built-in intelligence that creates a user friendly environment and accelerates the design 

process. 
o Free Student Licence. 

 
• Power 

o Creates 2D drawings faster and almost automatically, ready for workshop prototyping. 
o Speedy design ensures accuracy with focused industry tools and terminology. 
o Built-in Finite Element Analysis allows for real world simulation. 
o Allows not only for part design, but also environment creation. 



 
• Community 

o Due to its widespread applications, there is an active and still growing user community to 
which we could connect, share, and discuss any issue. 

o New talent is being drawn to this tool, which ramps up its usage and innovation techniques 
used for 3D design. 

o An accessible network of resources, people and ideas. 

 
Even though all the above provided quite a few reasons for us to choose this platform, let us bear 
in mind that one of the most important issues would be the ease to go from design to the workshop, 
which, due to its in-built 2D drawing engine, Solidworks is able to tackle.  
 
Such importance derives from the fact that the prototyping process, as we were able to experience 
in the course of this project, is often iterative, since small adjustments are always needed to bridge 
the reality gap between design and the actual final part. 
 
In next sections we show how we built the new part as well as the gripper we used and how this 
could be connected to the existing darwing-OP model. We will present, not only the deigned part 
in 3D, but also its drawing and the result we obtained. 
 
4.2 Process		
 
This section focus on the various steps of our design process which can be further divided into 3 
different categories: 

• Measurements: Here, we focused on getting acquainted with the existing model of the Darwin-OP 
itself and the purpose of this step is to gather accurate measures of those parts where Darwing and 
our designed part will connect. 

• 3D/2D Modelling: Here we explore how can a new part be built, and which shape must it take so 
that it works as intend both in respect to the connection to Darwin as well as the connection to the 
gripper. 

• Manufacturing: This point aims to give an overview of our choices for manufacture the part we 
needed and the challenges we have faced, both technical and not in order to do so. 

 
4.2.1 Measurements		
 
Getting the correct measurements for building a new part is a crucial step in any design project. 
At this stage we focused on, not only getting acquainted with the more generic dimensions of the  



Darwin-OP shown in Figure 11, but also its specific structure shown in Figure 12. 
 

 
 

 
 
 
 
Looking closely at the second Figure 12 we realized that due its inherent open-source structure, 
the part we would have to replace would be number 12 (the Hand) and that the part our design 
should connect to would one of the various “Angled Actuator Brakets” listed as number 10. 
 
Figure 13 shows some early sketches of the part we aimed to design. 

Figure	122:	Components 

Figure	11:	External	Measures 



	
Figure	13:	Early	Sketch	

 
 
4.2.2 3D/2D	Modelling	
Stepping from the sketching phase into the 3D modelling we started by building the part which 
would replace the original hand and hold the gripper. We also built the gripper in the 3D model so 
that we could create an assembly which aimed at mitigating any mistake in our measurements thus 
facilitating the next phase of our project.  
 
Below we show two figures of the final assembly, one with all the parts together and an exploded 
view of the same showing the different parts that constitute this model. 
 

 
Note that the part in question is that of a brownish colour, whereas the black parts represent the 
gripper we were provided with and the grey part represents the “Angled Actuator Braket” 
mentioned above. 
 
Let us note how we opted for a simple design, yet one that would fulfil all the specifications needed 
i.e.: 

• Full connectivity to Darwin’s main structure, through threaded holes (M1) 
• Full connectivity to the provided Gripper, also through threaded holes (M3) 

Figure	15:	Assembly Figure	145:	Exploded	View 



• A shape that allows for cable passing, necessary for driving the actuator itself. 
• Structural integrity. 

At this stage, getting the part ready for the workshop implies providing the 2D drawing. Figure 16 
shows the exact dimensions and shape of the part we designed. 
 
 

 
 
4.2.3 Manufacturing		
As mentioned above, one of the key features to take into account when designing a mechanical 
part is structural integrity. Nevertheless, as in our case, we aim to build a prototype that would 
demonstrate a proof-of-concept work (and not a fully marketable product) we decided to make use 
of the most common materials and manufacturing techniques, without compromising the goal of 
our project. For that reason, this part was built using a 2mm thick aluminium plate, with thread 
holes (M1 and M3) where the “L” shape was achieved by bending a strait plate. Figure 17 shows 
the intended result.  
 

 
 
 
 

Figure	16:	Exact	Dimensions 

Figure	17:	Manufactured	Part 



5 Electronics	–	Custom	Intelligent	Servo	
 
When designing a robotic gripper for Darwin, the first idea was to use the same motor as Darwin 
already uses for its motions since Darwin already provides control and power over this type of 
motors. Darwin uses so called “intelligent servos” which are explained in the next section. 
 

 
 
5.1 Introduction	to	Intelligent	Servos	(referred	as	IS)		
5.1.1 Definition	
Intelligent Servos are a new breed of servos used in high precision applications. This include 
applications that require exact positioning through Kinematics. An example application is a 
human like robot balancing on one lag which is a multi-disciplinary challenge. Nearly all current 
robots are using such “intelligent servos”, some with modifications that make them proprietary. 
 
5.1.2 MCU	Inside	
The first question to ask is what’s inside an Intelligent Servo that differs it from a usual servo. 
The “intelligent” of the servo already reveals the most important part, the intelligent servo has a 
brain / micro controller (MCU) that provides the communication and feedback of the position 
measurement. The measurement itself is carried out by an encoder. 
 
5.1.2.1 The	case	of	“Dynamixel	MX-28”	
As described in the previous section, IS’s are characterized by its MCU. The MX-28 uses an 
ARM CORTEX M3 based MCU for the processing. The precise measurement is provided by a 
magnetic encoder which also stands for high durability of the measurement device (is often 
identified as a source of errors). 
 
5.1.3 Communication	
How do Intelligent Servos communicate? Hence the IS has its own microcontroller this demands 
for a communication using a protocol. Cheaper servos are usually driven directly using PWM. 
The intelligent servos are typically using either RS485 or RS232 as interface. Since there is no 
standard, the communication itself strongly depends on the implementation of the manufacturer. 
In the case of Darwin and specifically the “Dynamixel MX-28” a proprietary protocol is used. It 
has similarities to a token-ring communication with a closed loop. A typical communication 
process is demonstrated in the picture below: 

Figure	18:	TODO 



 
 
 

 
	

	
	
	
5.1.4 Key	Features		
	
The key features of the Dynamixel MX-28 Intelligent Servo Summarized: 
 

MCU: ARM Cortex M3 manufactured by SI (72 
MHz) 

Encoder: 12-bit magnetic encoder 
Running Degree: 0-360° or continuous 
Motor: Maxon RE-max Metal Brush (PN:214897) 
Link: TTL  

 
 
Having all that said it’s no wonder that the costs of an intelligent servo is usually 10 times higher 
than the cost of an ordinary PWM controlled servo. In the case of Darwin’s Dynamixel MX-28 
Servo it exceeds the available budget. Therefore, a different solution needs to be invented / 
investigated. Since a servo requires power and some sort of control the Idea was to create our 
own Intelligent Servo which is described in the next section. 
 
5.2 Custom	Intelligent	Servo	
Our approach to an intelligent servo was to rebuild the environment of an intelligent servo as 
“adapter” to a cheap PWM stepper motor. 
 
5.2.1 Requirement	Analysis	
Since all servos are connected in serial, the power and communication is provided by the 
antecedent servo. The communication of the MX-28 is using TTL serial hence our servo should 
be able to communicate using this protocol. Resulting an MCU/IC is a mandatory part. The 
required power for both the MCU and the Stepper Motor is provided by the previous servo. 

Figure	19:	TODO	

Figure	20:	TODO 



Unfortunately, the provided power is at 12 Volt and a stall current of 1.4 Ampere. Since our 
stepper motor is working best between 5-6 Volts an AC-AC Voltage Regulator is required. In 
addition to that an MCU typically runs at 3-5 Volt which would require an additional Voltage 
Regulator just for the MCU. 
 
5.2.2 Intelligent	Servo	-	Our	Approach	

	
Figure	21:	TODO 

 
 
In our approach we used a Linear Voltage Regulator to “step down” to 5 Volt for the Servo. The 
used MCU in this case requires a 3 Volt input, hence we “step down” using regular resistors. The 
MCU itself is similar to the MX-28, ARM Cortex M3 based. For an easy access and 
programming interface to the MCU and FT232RL IC is used. This enables us to directly 
interface the MCU using USB. The diodes and capacitors are for the protection and are – 
theoretically – already implemented in the Voltage Regulator and in the Servo. Since we want to 
make sure that Darwin can’t be damaged and its “best practice” we have added them additionally 
to our Circuit. 
 
5.2.3 Critical	Evaluation	of	the	Custom	Intelligent	Servo	Approach	
What would we make different now? The first thing that was brought to our attention is the 
inefficiency of linear voltage regulators. These should be replaced by so called switching voltage 
regulators that emit less heat and are more efficient. In addition, the used Voltage Divider (the 
resistors) should be replaced by another Voltage regulator IC. This would save additional power 
which is a very important factor for a battery driven robot. If more time and budget would have 
been available, the stepper motor should have been replaced by a professional motor similar to 
the one used by Darwin. 
 



5.2.4 Learning	Outcome	
This approach helped a lot in understanding of modern servo technology and why its currently 
on the rise. Especially in high precision applications where a lot of Kinematics is involved these 
servos are frequently used. In addition to that we learned about the Electronics required to drive 
these intelligent Servos. Furthermore, we now understand better what happens inside a humanoid 
robot like Darwin and why they are so expensive. 
 
5.2.5 Reality	
After understanding how intelligent servos work and completing our own design we realized that 
the “nice” approach is not realizable in-time anymore. Resulting we had to create a simplified 
version of the above concept. This simplified version is explained in the next section. 
 

6 Simplified	Intelligent	Servo	
6.1 Selected	Servo		
The motor which was given to us was Servo motor HS-422 Standard made by Hitech. It is very 
simple and cheap.  

             	
Figure	22:	TODO	

 
 
 
Some of its features are  

Parameters Description 
Control System +Pulse Width Control 1500usec Neutral 
Operating Voltage 4.8-6.0 Volts 
Torque 45.82/56.93 oz-in. (4.8/6.0V) 
Direction Clockwise/ Pulse Traveling 1500-1900usec 
Current Drain (4.8V)  8mA/idle and 150mA no load operating 
Current Drain (6.0V 8.8mA/idle and 180mA no load operating 
Motor Type 3 Pole Ferrite 

 
 
 
6.1.1 Design	of	Power	Supply	
Operating voltage of servo is  4.8-6 V and Arduino board is also around 5- 12V  . But voltage 
coming from Darwin is a   12V . So need arises to step down voltage . Voltage regulators circuits 
is used to step down voltage from 12 to 5v.  
The circuits which can be used for step down voltages are  



• Linear voltage regulators circuits  
 

• Switching  voltage regulator circuit 
 

Linear voltage regulators circuit was used in our project since Switching circuits were not 
available in university. But Switching voltage regulator circuit are more suitable for our project 
since they are more efficient than linear voltage regulators circuits. 
 
6.1.2 Linear	voltage	regulator	design	

	
Figure	23:	TODO	

	

 
Input is 12 v and output is 5v which is given to servo and Arduino. Filters circuits(capacitors) 
and diodes are used to protect Darwin motors from receiving any backward current from the 
circuits. 
 
6.1.3 Servo	Movement	
The servo is controlled using PWM Technique. The term pulse width modulation refers to the 
technique of varying a signal’s pulse width to control a device such as a servo. Used in many 
applications apart from this such as Lamp dimmers, motor speed control, power supplies, noise 
making due to efficiency and simplicity of PWM signal as well as flexibility of pulse modulated 
waveform. The clock cycle, duty cycle, amplitude are some of basic parameters of PWM. Shown 
above is the simple PWM signal. 
 



	
Figure	24:	TODO 

 
a) 
The first parameter which is a clock cycle is the frequency of signal measured in hertz and easy 
to understand. The servo’s control signal is a 50 Hz pulse train. 
 

b)  
The other parameter which is a duty cycle involves switching of a signal. It is explained with 
waveform as shown above 
 

 
 
 
All three signals shown above are square wave oscillations modulated as per their oscillation 
width, so called duty cycle and have same frequency. The parameter which is changed many 
times during program execution is the duty cycle. The frequency remains same but signals differ 
in pulse width. Duty cycle controls amount of power supplied to external components. 



 
6.1.4 Servo	Rotation	Principle	
 
The shaft of servo is rotated by passing a PWM signal on a yellow wire as shown in fig above. 
The servo maintains the angular position of the shaft as long as signal exists on its input line and 
position of shaft changes, if signal given to control(yellow) wire changes. 
 
 

	
Figure	25:	TODO 

 
 
 
A control wire communicates the desired angular movement. The control signal’s pulse width 
determines the shaft’s angle of rotation. The minimal width and the maximum width of pulse that 
will command the servo to turn to a valid position are functions of each servo. Even different 
servos of the same or different brand, will have different maximum and minimums. 
In our servo, the pulse width ranges from about 0.6ms to about 2.4 ms as seen in fig[a] and can 
be interpreted as follows: 

•  Pulse width of 1.5 ms will give 0° rotation. 

• Pulse width of less than 1.5 ms will give  counter clockwise rotation  up to 90°. 

• Pulse width of greater than 1.5 ms will give  clockwise rotation up to 90°. 

Depending upon signal received by servo from Arduino platform,  the servo rotates in desired 
directions. 
 
 
6.1.5 Generation	of	pwm	using	Arduino	platform	
We can generate PWM in Arduino platform using PWM inbuilt technique or manual method.  
 
We used manual method since the built in PWM frequency did not matched the servos expected 
pulse timing.  
 
In Manual method, PWM is generated in Arduino platform by writing code as follows  

 
 
 



 
 

7 Conclusion	and	discussion		
In the course of this project we have faced many constraints and challenges that incur from 
undertaking a project with such a practical approach and objective. These can be divided into 5 
different, yet related, categories, namely: 

• Set a fixed set of specs from the beginning – The fact that we were given total freedom on how 
to work out the problem and tackle its many facets, came as the first big challenge we faced as 
group. This implied going over the problem in an iterative manner, constantly reassessing our 
assumptions as we learned more about the Darwin-OP, its functionalities and electro-mechanical 
structures. At this point the concise and concrete definition of the problem was made by writing a 
list of specifications we aimed to achieve during the course of this project. 
 

• Project plan should have been in place – A direct consequence of the above, resulted in the fact 
that also our assumptions, for how much time a certain task would take, were often, inaccurate. 
Despite the fact our knowledge of the platform increased with each passing week, our starting point 
was from total inexperience, which we were able to gradually overcome more efficiently as a result 
of both trial and error and research and by keeping a methodical approach. Nevertheless, the natural 
initial misjudgments of time consumption were a critical point for this (and most) project(s). 
 

• Tasks could have been split up with more defined roles – Naturally, as in any project, our 
knowledge of the problem increased with the passing of time we dedicated to it. In retrospective 
this caused us to divide tasks amongst ourselves not always in the most efficient manner. Once 

#include	<Servo.h>	
Servo	myservo;																																					//	create	servo	object	to	control	a	servo		
intpos	=	0;																																														//	variable	to	store	the	servo	position	
	
void	setup()		
{		
myservo.attach(9);																													//	attaches	the	servo	on	pin	9	to	the	servo	object		
}		
void	loop()		
{		
myservo.attach(9);	
	
for(pos	=	0;	pos<	180;	pos	+=	1)													//	goes	from	0	degrees	to	180	degrees		
		{																																																																									
myservo.write(pos);																													
delay(15);																																													//	waits	15ms	for	the	servo	to	reach	the	position		
		}		
	
for(pos	=	180;	pos>=1;	pos-=1)											//	goes	from	180	degrees	to	0	degrees		
		{																																	
myservo.write(pos);																											//	tell	servo	to	go	to	position	in	variable	'pos'		
delay(15);																																																							
		}		
	
myservo.detach();													//Detach	the	servo	if	you	are	not	controling	it	for	a	while	
delay(2000);	
}		

	
Figure	26:	Standard	Servo	Rotation	to	Exact	Angel	code 



more, as our familiarity with Darwin-OP improved so did our judgment on how tasks could be split 
and so our effectiveness also increased.  
 

• Design the world in detail before writing the controller – As mentioned, many of these issues 
are very entwined and dependent of each other. Building the simulated environment and coding the 
controller are naturally no exception. Even though at first we assumed that there was some 
independence between the two, and so we could (for example) start coding the methods that would 
make the Darwin move towards a generic target or grab an object, at a later stage we were 
confronted with the fact that our generic assumptions, regarding the environment, had to be further 
developed so we could progress with code implementation.  This also falls under the previous point 
where we mentioned that division of tasks in an effective manner was highly dependent on our 
knowledge of the problem itself and all the hardware and software capabilities. 
 

• Hardware should have been designed earlier in order to have time for modifications and 
testing – This is the bullet point which is definitely more concerned with the execution of ad hoc 
mechanical parts and electrical components needed for this project. Availability of resources, either 
they are materials, workshop schedules or defective components are a constant in any real-life 
project. In this particular case, and once more, as our understanding of the task deepened, we may 
say that, in retrospective, we could have started building the extra components earlier. 
Nevertheless, we felt that as a group it would be most advantageous for everyone if each member 
was comfortable in discussing any part of the project, and for that reason we purposefully focused 
on learning from each other’s expertise. 
 

To sum up, we believe we came quite close to our initial goal which was having the real Darwin 
grasp a pin and insert it into a hole, namely for the following reasons: 

• We have showed we were able to use form and colour detection. 
• We have showed we could command Darwin’s movements precisely, given the task. 
• We have been able to build a mechanical component which supports a different gripper and 

connects to Darwin’s main structure 
• We’ve shown we could use Darwin’s power supply and communication protocol to actuate a 

separate gripper. 

Despite the fact the final step is, obviously, still to overcome, we are confident that with this project 
we have set a solid foundation in terms of both simulation and electro-mechanical design so that 
future students can continue our work without the need to tackle the most low-level challenges. 
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9 Individual	Contributions	
 
Hugo: I took the necessary measures to build the new gripper support as well as developed the CAD 
model and scheduling the manufacturing of it in the workshop. 
 
Markus 
 
Samir : I completed integration of simulation between Darwin and Webot ,also developed world part of 
project. 
 
Waqar 
 
Roshenac: I designed, programmed and commented the simulator code in order to make the Darwin walk 
towards the ball, touch it, find the hole and put its hand trough the hole. I also wrote the chapter on 
software development and put all the different parts of the report together.  
 
Shakh- Izat: I gathered information about Darwin-Op and its specifications. Also I designed presentation. 
 


